Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Fabrication of MnSe/SnSe@C Heterostructures for High

Performance Li/Na Storage

Jiao Tian^{a,b}, Yongsheng Yao^b, Liwen Yang^{b,*}, Lingxiao Zha^b, Guobao Xu^c, Shouji

Huang^b, Tongye Wei^d, Juexian Cao^d, Xiaolin Wei^{a,b,*}

^aCollege of Physics and Electronics Engineering, Hengyang Normal University,

Hengyang 421002, China

^bSchool of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China

^cNational-Provincial Laboratory of Special Function Thin Film Materials, School of

Materials Science and Engineering, Xiangtan University, 411105, Hunan, China

^dHunan Institute of Advanced Sensing and Information Technology, Xiangtan

University, Hunan, 411105 China

Figure S1. SEM image of the MnSe/SnSe@C-M.

^{*}Corresponding authors: <u>ylwxtu@xtu.edu.cn</u> (L.W. Yang); <u>xlw@xtu.edu.cn(X. L.</u> <u>Wei)</u>

Figure S2. Lithium-ion batteries (a) Cycle performance of the MnSe/SnSe@C-L and MnSe/SnSe@C-M at 0.2 A g⁻¹. (b) Rate performance of the MnSe/SnSe@C-L and MnSe/SnSe@C-H at different current density.

Figure S3. Lithium-ion batteries (a) the D_{Li} of the MnSe/SnSe and MnSe/SnSe@C-M.

Figure S4. Kinetics investigation of the MnSe/SnSe@C-M as anode material for NIBs (a) CV curves of the MnSe/SnSe@C-M at 0.2 mV s⁻¹ for the initial three cycles. (b) CV curves of the MnSe/SnSe@C-M at different scan rate (0.2-1.8 mV s⁻¹). (c) Log (i) versus Log (v) curves for anode/cathode peaks. (d) the proportion of pseudo-capacitance at 1 mV s⁻¹.

Figure S5. The proportion of pseudo capacitance of the MnSe/SnSe@C-M at different scan rate for NIBs (0.2-1.8 mV s⁻¹).

Figure S6. SEM images of the MnSe/SnSe@C-M nanoboxes after 600 cycles at 1A g⁻¹

(MnSe/SnSe@C-M//LFP Li-ion full cell).

Morphology of materials	Voltage	Cycles	Current	Cs(mA	Reference
	Range	(times)	density (A g ⁻¹)	hg-1)	
	(V vs. Li ⁺ /Li)				
SnSe/carbon	0.01-3	100	0.5A g ⁻¹	633.1 mAh g ⁻¹	1
SnSe-amorphous carbon	0.01-3	200	0.1 A g ⁻¹	626 mAh/g	2
Mn ₂ SnO ₄ /Sn/C Cubes	0.01-3	100	0.5A g ⁻¹	908 mAh g ⁻¹	3
Se-doped SnS@carbon nanofibers	0.01-3	50	0.2 A g ⁻¹	742 mAh/g	4
SnS-SnSe Nanocomposite	0.01-3	50	3μA/cm ⁻² ;	613 mAh/g	5
SnO ₂ /N-C Nanoflowers	0.01-3	100	1.0A g ⁻¹	750 mAh g ⁻¹	6
SnO ₂ /Sn-RGO	0.01-2.5	400	1.6A g ⁻¹	449 mAh g ⁻¹	7
SnO ₂ Nanorod/Carbon Nanofiber	0.05-3	850	0.1A g ⁻¹	485 mAh g ⁻¹	8
SnSe/C nanofibers	0.01-2.5	500	1.0A g ⁻¹	405 mAh g ⁻¹	9
SnSe/SnO ₂ @Gr	0.01-3	200	$0.2 \ { m A g^{-1}}$	810 mAh g ⁻¹	10
SnSe/CNT	0.01-3	200	0.2A g ⁻¹	772 mAh g ⁻¹	11
SnSe/rGO	0.01-3	200	0.1A g ⁻¹	620 mA h g ⁻¹	12
SnSe N/S-doped rGO	0.01-3	100	0.2A g ⁻¹	785 mA h g ⁻¹	13
SnSe ₂ Quantum Dot/rGO	0.01-3	500	0.05A g ⁻¹	778.5 mA h g ⁻¹	14
Carambola-shaped SnO ₂ /CNT	0.01-3	500	1.0A g ⁻¹	452 mAh g ⁻¹	15
MnSe/SnSe@C	0.01-3	240	0.2A g ⁻¹	965 mAh g-1	This work
	0.01-3	900	0.5A g ⁻¹	557 mAh g ⁻¹	

 Table S1. Electrochemical performance of MnSe/SnSe@C for lithium ion half cell and

 other Sn-based materials for lithium ion half cell.

References

- L. Cui, X. Li, C. Yin, J. Wang, S. Li, Q. Zhang and S. Kang, Dalton Trans, 2019, 48, 504-511.
- W. u. Rehman, Y. Xu, X. Sun, I. Ullah, Y. Zhang and L. Li, ACS Applied Materials & Interfaces, 2018, 10, 17963-17972.
- K. Liang, T. Y. Cheang, T. Wen, X. Xie, X. Zhou, Z. W. Zhao, C. C. Shen, N. Jiang and A. W. Xu, The Journal of Physical Chemistry C, 2016, 120, 3669-3676.
- G. Ali, S. Mehboob, M. Ahmad, M. Akbar, S.-O. Kim, H. Y. Ha and K. Y. Chung, Journal of Alloys and Compounds, 2020, 823.
- 5. X. Shi, X. Lin, S. Liu, A. Li, X. Chen, J. Zhou, Z. Ma and H. Song, Chemical Engineering Journal, 2019, 372, 269-276.
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun and J. Ma, Nano-micro letters, 2018, 10, 21.
- X. Sui, X. Huang, Y. Wu, R. Ren, H. Pu, J. Chang, G. Zhou, S. Mao and J. Chen, ACS applied materials & interfaces, 2018, 10, 26170-26177.
- J. Abe, K. Takahashi, K. Kawase, Y. Kobayashi and S. Shiratori, ACS Applied Nano Materials, 2018, 1, 2982-2989.
- D. Liu, Z. Kong, X. Liu, A. Fu, Y. Wang, Y. G. Guo, P. Guo, H. Li and X. S. Zhao, ACS Appl Mater Interfaces, 2018, 10, 2515-2525.
- 10. X. Zhou, L. Yu and X. W. D. Lou, Advanced Energy Materials, 2016, 6.

- 11. X. Zhao, M. Luo, W. Zhao, R. Xu, Y. Liu and H. Shen, ACS Appl Mater Interfaces, 2018, 10, 38006-38014.
- L. Pan, Y. Zhang, F. Lu, Y. Du, Z. Lu, Y. Yang, T. Ye, Q. Liang, Y. Bando and X. Wang, Energy Storage Materials, 2019, 19, 39-47.
- M. Liu, S. Zhang, H. Dong, X. Chen, S. Gao, Y. Sun, W. Li, J. Xu, L. Chen, A. Yuan and W. Lu, ACS Sustainable Chemistry & Engineering, 2019, 7, 4195-4203.
- F. Li, G. Luo, W. Chen, Y. Chen, Y. Fang, M. Zheng and X. Yu, ACS Appl Mater Interfaces, 2019, 11, 36949-36959.
- H. Kim, H. Kim, S. Muhammad, J. H. Um, M. S. A. Sher Shah, P. J. Yoo and W.-S. Yoon, Journal of Power Sources, 2020, 446.