Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

In vivo Delivery of Nuclear Targeted Drugs for Lung Cancer Using Novel Synthesis and Functionalization of Iron Oxide Nanocrystals

Chandrababu Rejeeth a, b*, Nipun Babu Varukattu c, Alok Sharma d, Raju Suresh Kumar e

Abdulrahman I. Almansour^e, Natarajan Arumugam^e, Samson Afewerki^{f, g}, Soundarapandian

Kannan h*

^a School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, PR China.

^b Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India.

^c Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, PR China. ^d Department of Pharmacognosy ISF College of Pharmacy, Moga Punjab 142001, India.

^eDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

^f Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.

^g Division of Health Sciences and Technology, Harvard University – Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.

^h Division of cancer nanomedicine. School of life science, Periyar University, Salem 636011, India.

Corresponding author email:

crejee@gmail.com; (Mobile +91 6369283992)

skperiyaruniv@gmail.com

Figure S1-S8

Figure S1. The hydrodynamic size distribution measured by dynamic light scattering shows a narrow size distributon with an average diameter of 65.7 ± 0.92 nm

Figure S2. The EDS analysis of PEG-DOX-y-Fe₂O₃-NC showed a strong signal from Fe and the presence of C, N and O due to DOX and PEG.

Figure S3. FTIR spectra of PEG, DOX and PEG-DOX-y-Fe₂O₃-NC.

Figure S4. (A) The established standard curve of DOX at about 480 nm by UV-VIS absorption spectra; (B) UV-VIS absorption spectrum of DOX in supernatant.

PRUSSIAN BLUE STAIN

CONTROL

 $24 h - \gamma - Fe_2O_3 - NC$

Figure S5. Prussian blue staining A) Control and B) cells were incubated with 25 μ g/mL PEG-DOX- γ -Fe₂O₃-NC for 24hr, and stained with 2 mL of Prussian blue solution at 37°C for 30min. A blue area or spot was observed in almost every cell (indicated by arrows).

Figure S6. Confocal microscopy image of A549 cells treated with PEG-DOX- γ -Fe₂O₃-NC. No DOX signal was obtained within 0 hr, but DOX was concentrated in the core within 3 hr, and evenly distributed DOX was also displayed around the core. Note: DOX (red) in cell.

Figure S7. Transmission electron microscopy of A549 cells showed the internalization of PEG-DOX- γ -Fe₂O₃-NC after 6 hr of incubation in the nucles. Note: The red arrow represents the collection of nanocrystals.

Figure S8. Pharmacokinetics and biodistribution of DOX formulations in vivo. (a) In vivo DOX pharmacokinetics after i.v. injection of free PEG-DOX- γ -Fe₂O₃-NC and in to Sprague-Dawley rat. (b) Average semiquantitative signals of major organs and tumor after i.v. injection. Data are presented as mean \pm SD (n = 3; *P < 0.05, ***P < 0.001).