Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

New 3,1,2,4-benzothias elenadiazines, related π -heterocycles including Herz cations, radicals and molecular complexes, and Bunte salts

Alexander Yu. Makarov^{*,a}, Yulia M. Volkova^a, Samat B. Zikirin^b, Irina G. Irtegova^a, Irina Yu. Bagryanskaya^a, Yuri V. Gatilov^a, Andrey A. Nefedov^a, Andrey V. Zibarev^a

^a N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation
 Fax: +7 383 330 9752; E-mail: makarov@nioch.nsc.ru
 ^b V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation

Contents

- 1. X-ray diffraction
- 2. Additional chemical experiments
- 3. Nuclear magnetic resonance
- 4. Thermogravimetry and differential scanning calorimetry
- 5. Electrospray ionization mass spectrometry
- 6. References

1. X-ray diffraction data

Table S1 Crystallographic data of compounds 3, 24, 25 and 25.26/27

Compound	3	24	25
Empirical formula	C ₇ H ₆ N ₂ OSSe	C ₆ H ₄ NClSSe	$C_{14}H_{20}NS_2Cl$
Formula weight	245.16	236.57	301.88
Temperature K	296(2)	200(2)	296(2)
Wavelength Å	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P-1	$P2_1/n$	C2/m
Unit cell dimensions a Å	6.6599(4)	7.8867(4)	10.6876(18)
<i>b</i> Å	7.4329(4)	5.5755(2)	7.0309(14)

<i>c</i> Å	8.7949(5)	17.6217(8)	20.882(6)
α°	87.367(3)	90	90
β°	75.419(3)	97.319(2)	95.119(9)
γ°	87.060(3)	90	90
Volume Å ³	420.55(4)	768.55(6)	1562.9(6)
Z	2	4	4
Density (calcd.) Mg.m ⁻³	1.936	2.045	1.283
Abs. coefficient mm ⁻¹	4.660	5.419	0.495
F(000)	240	456	640
Crystal size mm ³	0.3×0.3×0.06	0.60×0.40×0.02	0.40×0.30×0.01
Θ range for data collection $^{\circ}$	2.4–27.5	2.3–35.0	0.98–25.0
Index ranges	$\begin{array}{l} -8 \leq h \leq 8, -9 \leq k \leq 9, -\\ 11 \leq l \leq 11 \end{array}$	$\begin{array}{l} -12 \leq h \leq 12, -8 \leq k \leq 8, \\ -28 \leq l \leq \!$	$\begin{array}{l} -12 \leq h \leq 12, -8 \leq k \leq 8, \\ -24 \leq l \leq 24 \end{array}$
Reflections collected	7576	18803	12917
Independent reflections	1931 R(int) = 0.028	3382 R(int) = 0.064	1502 R(int) = 0.102
Completeness to θ %	99.4	99.9	99.7
Data / restraints / parameters	1931 / 0 / 110	3382 / 0 / 91	1502/ 18 / 113
Goodness-of-fit on F^2	1.10	1.02	1.08
Final R indices $I > 2\sigma(I)$	$R_1 = 0.0283, WR_2 = 0.0727$	$R_1 = 0.0397, WR_2 = 0.0932$	$R_1 = 0.0931, wR_2 = 0.2361$
Final R indices (all data)	$\begin{array}{rcl} R_1 &=& 0.0325, & wR_2 &=\\ 0.0775 \end{array}$	$R_1 = 0.0521, WR_2 = 0.0994$	$R_1 = 0.1300, WR_2 = 0.2457$
Largest diff. peak/hole e.Å ⁻³	0.63/-0.62	1.89/-1.20	0.70/-0.58
CCDC	2115817	2115818	2115819

_

Table S1 (continued)

Compound	25-26/27		
Empirical formula	$C_{14}H_{20}NS_2Cl\cdot C_{14}H_{21.33}N_2O_2S_2Cl_{0.67}$		
Formula weight	639.41		
Temperature K	296(2)		
Wavelength Å	0.71073		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions a Å	10.5054(7)		

<i>b</i> Å	12.3360(8)
c Å	14.6228(10)
α°	113.319(3)
β°	98.895(3)
γ°	103.186(3)
Volume Å ³	1629.55(19)
Z	2
Density (calcd.) Mg.m ⁻³	1.303
Abs. coefficient mm ⁻¹	0.458
F(000)	677
Crystal size mm ³	0.45×0.30×0.10
Θ range for data collection $^{\circ}$	1.4–30.7
Index ranges	$-13 \le h \le 13, -12 \le k \le 16, -18 \le l \le 16$
Reflections collected	10427
Independent reflections	7060 R(int) = 0.018
Completeness to θ %	99.9
Data / restraints / parameters	7060 / 2 / 371
Goodness-of-fit on F^2	1.03
Final R indices $I > 2\sigma(I)$	$R_1 = 0.0469, wR_2 = 0.1215$
Final R indices (all data)	$R_1 = 0.0691, wR_2 = 0.1370$
Largest diff. peak/hole e.Å ⁻³	0.600/-0.254
CCDC	2115820

Figure S1 Individual salt **25** (CCDC 2115819), selected bond distances (Å) and angles (°): S1–S2 2.002(4), S2–N3 1.579(8), N3–C3a 1.37(1), C3a–C7a 1.43(1), C7a–S1 1.749(9); C7a–S1–S2 94.1(3), S1–S2–N3 99.1(3), S2–N3–C3a 117.7(7), N3–C3a–C7a 116.7(8), C3a–C7a–S1 112.4(7).

For salt **25**, S1...Cl⁻ and S2...Cl⁻ interionic contacts of 3.089(4) and 2.813(4) Å, respectively, are shortened as compared with the sum of corresponding van der Waals (VdW) radii of 3.55 Å.^[1]

In the crystal, salt **25** reveals ion pairs featuring a single shortened contact Cl...H of 2.77 Å (the sum of VdW radii is 2.95 Å)^[1] (Figure S2). Crystal complex **25·26/27** displays dimer of **26/27** molecules connected by S–O...H–N hydrogen bonds of 2.34(2) Å (the sum of VdW radii is 2.72 Å),^[1] together with ion-pair dimers of **25**. The dimers of **26/27** molecules and dimers of **25** ion pairs are connected by Cl⁻...H–N hydrogen bonds of 2.29(3) Å (the sum of VdW radii is 2.95 Å),^[1] S...O contacts of 3.309(3) Å (the sum of VdW radii is 3.32 Å)^[1] and C...O contacts of 3.060(4) and 3.041(3) Å (the sum of VdW radii is 3.22 Å)^[1] forming infinite chains (Figure S3).

Figure S2 Shortened contacts (dashed blue and red lines) and packing fragment in crystalline **25**. Colour code: gray – C, light gray – H, green – Cl, blue – N, red – O, yellow – S.

Figure S3 Shortened contacts (dashed blue and red lines) and packing fragment in crystalline complex $25 \cdot 26/27$. Colour code: gray – C, light gray – H, green – Cl, blue – N, red – O, yellow – S.

2. Additional chemical experiments

Compounds **36-40** were prepared by known methods.^[2] In both variants of unsuccessful cyclizations (*a* and *b*, Scheme S1) with compounds **10**, **11** and **36-39**, any heterocyclic products were not observed in the reaction mixtures; with compound **12**, ¹H NMR spectra revealed minor signals of compound **1**, which was not isolated due to its small abundance.

Scheme S1 Unsuccessful cyclizations of compounds 10-12 and 36-39.

Hydrolysis of 5-chloro-1,3,2,4-benzodithiadiazine 40

Black crystals of compound **40** turned yellow after the several month-long action of air moisture. Recrystallization from hexane gave 2,2'-diamino-3,3'-dichlorodiphenyl disulfide **41** identified by ¹H NMR (Scheme S2).^[3]

Scheme S2 Hydrolysis of dithiadiazine 40 into disulfide 41.

3. Nuclear magnetic resonance

¹H NMR spectra and spin-spin coupling constants J

Figure S4 ¹H NMR spectrum of compound 3. Top: the general view. Bottom: downfield part; J = 8.2 Hz, 2 Hz.

Figure S5 The general view and downfield (left insert) and upfield (right insert) parts of ¹H NMR spectrum of the 10:3 mixture of compounds 6 and 8.

Figure S6 The general view and downfield (left insert) and upfield (right insert) parts of ¹H NMR spectrum of a mixture of compounds **5-9**.

Figure S7 The general view and downfield (left insert) and upfield (right insert) parts of ¹H NMR spectrum of compound 10.

Figure S8 The general view and downfield (upper insert) and upfield (lower insert) parts of ¹H NMR spectrum of compound **11**.

Figure S9 The general view of ¹H NMR spectrum of compound 14.

Figure S10 ¹H NMR spectrum of compound 15. Top: the general view. Bottom: downfield part; spin-spin coupling constants J are unresolved.

Figure S11 ¹H NMR spectrum of compound 25. Top: the general view. Bottom: downfield part; J = 7.8 Hz.

Figure S12 ¹H NMR spectrum of compound 34. Top: the general view. Bottom: downfield part; J = 8.2 Hz.

Figure S13 ¹H NMR spectrum of compound 35. The general view and downfield part (inserts). The signal at 7.29-7.19 ppm reveals ABX system with $J_{AB} = 8$ Hz and $\delta = 7.24$ and 7.25 ppm; other $J = 1.9 \pm 0.2$ Hz and 0.5 ± 0.2 Hz.

¹³C NMR spectra

Figure S14 The general view of ¹³C NMR spectrum of compound 3.

Figure S15 ¹³C NMR (*J*mod) spectrum of compound 10. Top: the general view. Bottom: downfield part.

Figure S16 The general view of ¹³C NMR spectrum of compound 14.

Figure S17 The general view of ¹³C NMR (*Jmod*) spectrum of compound 16.

Figure S18 The general view of ¹³C NMR spectrum of compound 25.

Figure S19 The general view of ¹³C NMR spectrum of compound 34.

¹⁴N and ¹⁵N NMR spectra

Figure S20 The general view of ¹⁴N NMR spectrum of compound 14.

Figure S21 The general view of ¹⁵N NMR spectrum of compound 16.

Figure S22 The general view of ⁷⁷Se NMR spectrum of compound 3.

Figure S23 The general view of ⁷⁷Se NMR spectrum of the mixture of compounds **1**, **29** and 2,2'-diaminodiphenyl diselenide.

4. Thermogravimetry and differential scanning calorimetry

Figure S24 TG / DSC data for salts 27 (top) and 30 (bottom).

5. Electrospray ionization mass spectrometry

ESI-MS data for the products of reaction between 5,8-di-tert-butyl-1,3,2,4-benzodithiadiazine **16** and *SCl*₂:

Figure S25 ESI-MS, positive-ion mode spectrum. Above: experimental spectrum featuring the presence of peak with m/z = 266 and the absence of peaks around $m/z \sim 348$. Middle: experimental isotopic pattern of the peak with m/z = 266 and its simulation for $C_{14}H_{20}NS_2^+$. Bottom: experimental isotopic pattern of the peak with m/z = 300 (due to low intensity, only 2 main lines are observed) and its simulation for $C_{14}H_{19}CINS_2^+$.

Figure S26 ESI-MS, negative-ion mode spectrum: (*a*) general view of the spectrum; (*b*) experimental isotopic pattern of the peak with m/z = 298 and its simulation for $C_{14}H_{22}N_2OS_2^{-}$; (*c*) experimental isotopic pattern of the peak with m/z = 316 and its simulation for $C_{14}H_{21}CIN_2S_2^{-}$; (*d*) experimental isotopic pattern of the peak with m/z = 332 and its simulation for $C_{14}H_{21}CIN_2S_2^{-}$; (*d*) experimental isotopic pattern of the peak with m/z = 332 and its simulation for $C_{14}H_{21}CIN_2S_2^{-}$; (*d*) experimental isotopic pattern of the peak with m/z = 332 and its simulation for $C_{14}H_{21}CIN_2S_2^{-}$.

Spectral mode	M/z	Assignment	Exact mass	Relative error,
Positive	266.108	S N S ⁺	266.103 (C ₁₄ H ₂₀ NS ₂ ⁺)	19
	300.055		300.064 (C ₁₄ H ₁₉ ClN ₂ S ⁺)	32
Negative ions	282.114	S NH N S H	$\begin{array}{llllllllllllllllllllllllllllllllllll$	27
	298.117	S NH N S N	298.110 (C ₁₄ H ₂₂ N ₂ OS ₂ ⁻)	22
	316.079		316.083 (C ₁₄ H ₂₁ ClN ₂ S ₂ ⁻)	12
	332.073		332.079 (C ₁₄ H ₂₁ ClN ₂ OS ₂ ⁻)	14

Table S2 Assignment of ESI-MS data

6 References

- (a) M. Mantina, A. C. Chamberlin, R. Valero, C. C. Cramer and D. J. Truhlar, J. Chem. Soc. A, 2009, 113, 5806–5812; (b) R. S. Rowland and R. Taylor, J. Phys. Chem., 1996, 100, 7384–7391; (c) A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
- (a) A. Yu. Makarov, I. Yu. Bagryanskaya, Yu. V. Gatilov, T. V. Mikhalina, M. M. Shakirov, L. N. Shchegoleva and A. V. Zibarev, *Heteroatom Chem.*, 2001, 12, 563–576;
 (b) I. Yu. Bagryanskaya, Yu. V. Gatilov, A. Yu. Makarov, A. M. Maksimov, A. O. Miller, M. M. Shakirov and A. V. Zibarev, *Heteroatom Chem.*, 1999, 10, 113–124; (c) A. V. Zibarev, A. O. Miller, Yu. V. Gatilov and G. G. Furin, *Heteroatom Chem.*, 1990, 1, 443–453.
- 3 A. R. Katritzky, B. V. Rogovoy, C. Chassaing, V. Vvedensky, B. Forood, B. Flatt and H. Nakai, J. Het. Chem., 2000, 37, 1655–1658.