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Table S1. UV-Vis. and electrochemical data for 1 and 2.

Table S2. EPR data for 1 and 2.

Table S3. Optimization of styrene epoxidation® under variable reaction conditions using
oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.

Fig. S1 ESI-MS spectrum of  0x0[5,10,15-  tris(4-cyanophenyl)corrolato]
vanadium(IV), 1 in CH3CN shows the (a) measured spectrum with isotopic
distribution pattern (experimental) and (b) isotopic distribution pattern
(simulated).

Fig. S2 ESI-MS  spectrum of oxo[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-
corrolato] vanadium(IV), 2 in CH3CN shows the (a) measured spectrum with

isotopic distribution pattern (experimental) and (b) isotopic distribution pattern

(simulated).

Fig. S3 Electronic absorption spectrum of 1 in acetonitrile at 298K.

Fig. S4 Electronic absorption spectrum of 2 in acetonitrile at 298K.

Fig. S5 Evolution of the electronic absorption spectra of 1 in the presence of excess
triethylamine in CH;CN.

Fig. S6 FT-IR spectrum of 1 as a KBr pellet.

Fig. S7 FT-IR spectrum of 2 as a KBr pellet.

Fig. S8 Cyclic voltammogram (black solid line) 1 (103 M) in CH3CN containing 0.1

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was
100 mV s™!. The potentials are versus Ag/AgCI.

Fig. S9 Cyclic voltammogram (black solid line) 2 (107> M) in CH3CN containing 0.1
M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was
100 mV s™!. The potentials are versus Ag/AgCl.

Fig. S10 X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR
parameters: microwave frequency, 9.438 GHz; incident microwave power,
0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G;
receiver gain, 2 x 102,

Fig. S11 The 'H-NMR spectrum of conversion of styrene to styrene oxide in CDCl;
solution. The reaction was performed in the air.

Fig. S12 The 'H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene
oxide in CDCl; solution. The reaction was performed in the air.

Fig. S13 "H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide

in CDClI; solution. The reaction was performed in the air.
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'H-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in
CDCl; solution. The reaction was performed in the air.

'H-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDClj;
solution. The reaction was performed in the air.

"H-NMR spectrum of conversion of norbornene to norbornene epoxide in
CDCl; solution. The reaction was performed in the air.

'H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in
CDCl; solution. The reaction was performed in air.

'H-NMR  spectrum of conversion of cyclohexenone to 1,2-
epoxycyclohexenone in CDClIj solution. The reaction was performed in air.
"H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide
in CDClI; solution. The reaction was performed in the air.

"H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-
penten-2-one oxide in CDCl; solution. The reaction was performed in air.
"H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1-
one oxide in CDCl; solution. The reaction was performed in air.

'H-NMR spectrum of conversion of trans-stilbene to trans-stilbene oxide in
CDCl; solution. The reaction was performed in the air.

"H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene
oxide in CDClI; solution. The reaction was performed in air.

'H-NMR spectrum of conversion of 1-hexene to 1-hexene oxide in CDCl;
solution. The reaction was performed in air.

"H-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide
in CDClI; solution. The reaction was performed in air.

'H-NMR spectrum of conversion of 4-tert-butoxystyrene to 4-tert-
butoxystyrene oxide in CDCl; solution. The reaction was performed in air.
"H-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in
CDClI; solution. The reaction was performed in air.

'TH-NMR spectrum of conversion of 4-vinylnapthalene to 4-vinylnapthalene
oxide in CDClj; solution. The reaction was performed in air.

'H-NMR spectrum of conversion of 4-nitrostyrene to 4-nitrostyrene oxide in
CDCl; solution. The reaction was performed in air.

Time evolution UV—vis spectra of the epoxide formation reaction performed at

50°C under air using complex 1 as catalyst.
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Electronic absorption spectrum of 1 (red line) and the green intermediate
(green line) in acetonitrile. After performing the reaction at 50°C, the pure
green intermediate was purified by column chromatography.

Time evolution "H-NMR spectra in CD;CN of the epoxide formation reaction
performed at 50°C under air using complex 1 as catalyst.

FT-IR spectrum of 1 (red line) and the green intermediate (green line) as KBr
pellet. After performing the reaction at 50°C, the pure green intermediate
was purified by column chromatography.

ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V)
in CH;CN shows the (a) isotopic distribution pattern (simulated) and (b)
measured spectrum with isotopic distribution pattern (experimental).

'TH-NMR spectrum of styrene oxide in CDClj; solution.

BC {TH}-NMR spectrum of styrene oxide in CDCl; solution.

"H-NMR spectrum of cyclohexene oxide in CDCl; solution.

3C {TH}-NMR spectrum of cyclohexene oxide in CDCl; solution.

'TH-NMR spectrum of cyclooctene oxide in CDCl; solution.

BC {!H}-NMR spectrum of cyclooctene oxide in CDCl; solution.



Table S1. UV-Vis. and electrochemical data for 1 and 2.

Compound UV-vis. Data¢ Electrochemical data®?

Amax / nm (g / M~'em™) Oxidation Reduction

EV (AE,, mV) | E°V (AE,, mV)

1 437 (128500), 541 (9200), | +0.36, +0.52 -0.72
606 (29700).

2 433 (120800), 546 (15400), | +0.38, +0.54 -0.71
610 (39900).

2]n acetonitrile.

b The potentials are versus Ag/AgCl.



Table S2. EPR data for 1 and 2.
Compound Ziso Aiso(G) AH (G)
1 2.01509 88 20
2 1.97462 86 24




Table S3. Optimization of styrene epoxidation® under variable reaction conditions using

oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.

Entry Catalyst Styrene  Oxidant Solvent Time Temp. % Conv.*
(wmol) - mopy  (MmOD (mL /ratio) (h) ¢C)
1 - 5 H,0,, 15 MeCN, 5 6 50 12
2 1 5 H,0,, 15 MeCN, 5 5 RT 0
3 1 5 H,0,, 15 MeCN, 5 5 60 71
4 1 5 H,0,, 15 MeCN, 5 5 40 66
5 1 5 TBHP, 15  MeCN:H,0, 3:2 1 50 45
6 1 5 H,0,, 15 MeCN:H,0, 3:2 0.5 50 24
7 1 5 H,0,,15 MeCN:H,O0, 3:2 1 50 82
8 1 5 H,0,, 10 MeCN:H,0, 3:2 1 50 79
9 1 5 H,0,, 5 MeCN:H,0, 3:2 1 50 54
10 1 10 H,0,, 15 MeCN:H,0, 3:2 1 50 41
11 1 15 H,0,, 15 MeCN:H,0, 3:2 1 50 33
b12 1 5 H,0,, 15 MeCN:H,0, 3:2 1 50 75

aUnder air, Amount of KHCO3 used = 150 mg (1.5 mmol). ® under nitrogen atmosphere. ¢ %

of conversion was established by 'H NMR.
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ESI-MS spectrum of oxo[5,10,15- tris(4-cyanophenyl)corrolato] vanadium
(IV), 1 in CH3CN shows the (a) measured spectrum with isotopic distribution

pattern (experimental) and (b) isotopic distribution pattern (simulated).
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corrolato] vanadium (IV), 2 in CH3CN shows the (a) measured spectrum with
isotopic distribution pattern (experimental) and (b) isotopic distribution pattern

(simulated).
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Electronic absorption spectrum of 1 in acetonitrile at 298K.
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Fig. S§ Evolution of the electronic absorption spectra of 1 in the presence of excess

triethylamine in CH;CN.
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Fig. S7 FT-IR spectrum of 2 as a KBr pellet.
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Fig. S8 Cyclic voltammogram (black solid line) 1 (107> M) in CH3CN containing 0.1

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was
100 mV s™!. The potentials are versus Ag/AgCl.
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Fig. S9 Cyclic voltammogram (black solid line) 2 (103 M) in CH3CN containing 0.1
M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was
100 mV s™!. The potentials are versus Ag/AgCl.
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X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR
parameters: microwave frequency, 9.438 GHz; incident microwave power,
0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G;

receiver gain, 2 x 102,
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'H-NMR  spectrum of conversion of styrene to styrene oxide in CDCls
solution. The reaction was performed in the air.
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Fig. S12 "H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene oxide

in CDCl; solution. The reaction was performed in air.
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Fig. S13 '"H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide

in CDClI; solution. The reaction was performed in air.
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'TH-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in

CDCl; solution. The reaction was performed in air.
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'TH-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDCls

solution. The reaction was performed in air.
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Fig. S16 'TH-NMR spectrum of conversion of norbornene to norbornene epoxide in

CDCl; solution. The reaction was performed in air.
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Fig. S17 'H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in

CDCl; solution. The reaction was performed in air.
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Fig. S18 'H-NMR  spectrum of conversion of cyclohexenone to 1,2-

epoxycyclohexenone in CDClI; solution. The reaction was performed in air.



Br

8(H,) = 6.70

5(Hy) = 5.81 OHo) =35.34

O _H

Ha,q b1
Br

B(th) =3.13
8(H,)=3.81 ¥ 8(Hy)=2.75

26

A |ll .-Al-

JU L. JL_ML.

¢

1.06-]

||

z

0104

T T T T T T

95 90 85 80 75 70 65 6.0 55 5.0

Fig. S19

T T T T

45 40 35 3.0 25 20 15 1.0 05 0.0ppm

in CDCl; solution. The reaction was performed in air.

"H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide
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Fig. S20 'H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-

penten-2-one oxide in CDCl; solution. The reaction was performed in air.
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Fig. S21

'"H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1-

one oxide in CDClj; solution. The reaction was performed in air.
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Fig. S22 'TH-NMR spectrum of conversion of trans-stilbene to trans-stilbene oxide in

CDCl; solution. The reaction was performed in air.
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Fig. S23 "H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene

oxide in CDClI; solution. The reaction was performed in air.
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solution. The reaction was performed in air.
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'TH-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide

in CDClI; solution. The reaction was performed in air.



33

me
(0] He
S(H,) = 5.20

8(H,) =5.68

a
8(H,) =6.72 ,©AHC1
(0]

S(Hh]) =3.03
8(H,)=3.77 Y 8(H,)=273
g : % 3 g
9‘.5 ’ 8‘.5 | 7I.5 I 6‘.5 ‘ 5‘.5 ’ 4‘.5 | 3I.5 I l".5 1‘.5 | 0‘.5 pp:‘n
Fig. S26 'TH-NMR spectrum of conversion of 4-tert-butoxystyrene to 4-tert-

butoxystyrene oxide in CDCIl; solution. The reaction was performed in air.
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Fig. S27 'TH-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in

CDCl; solution. The reaction was performed in air.
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Fig. S30 Time evolution UV—vis spectra of the epoxide formation reaction performed at

50°Cunder air using complex 1 as a catalyst.
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Fig. S31 Electronic absorption spectrum of 1 (red line) and the green intermediate

(green line) in acetonitrile. After performing the reaction at 50°C, the pure

green intermediate was purified by column chromatography.
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Fig. S32 Time evolution "H-NMR spectra in CD;CN of the epoxide formation reaction

performed at 50°C under air using complex 1 as catalyst.
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Fig. S33 FT-IR spectrum of 1 (red line) and the green intermediate (green line) as KBr
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Fig. S34 ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V)
in CH3CN shows the (a) isotopic distribution pattern (simulated) and (b)

measured spectrum with isotopic distribution pattern (experimental).
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Fig. S35 "H-NMR spectrum of styrene oxide in CDCl; solution.
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Fig. S36 BC {!H}-NMR spectrum of styrene oxide in CDCl; solution.
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Fig. S37 'H-NMR spectrum of cyclohexene oxide in CDCl; solution.
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Fig. S38 BC {!H}-NMR spectrum of cyclohexene oxide in CDCl; solution.
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Fig. S39

'TH-NMR spectrum of cyclooctene oxide in CDCl; solution.
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Fig. S40 13C {'H}-NMR spectrum of cyclooctene oxide in CDCl; solution.



