Electronic Supplementary Information (ESI[†])

Oxo(corrolato)vanadium(IV) Catalyzed Epoxidation: An Oxo(peroxo)(corrolato)vanadium(V) is the True Catalytic Species

Panisha Nayak, Manisha Nayak, Kiran Meena and Sanjib Kar*

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India

E-mail: sanjib@niser.ac.in

- **Table S2.**EPR data for 1 and 2.
- Table S3.Optimization of styrene epoxidationa under variable reaction conditions using
oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.
- Fig. S1 ESI-MS spectrum of oxo[5,10,15- tris(4-cyanophenyl)corrolato] vanadium(IV), 1 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- Fig. S2 ESI-MS spectrum of oxo[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)corrolato] vanadium(IV), 2 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- **Fig. S3** Electronic absorption spectrum of **1** in acetonitrile at 298K.
- Fig. S4 Electronic absorption spectrum of 2 in acetonitrile at 298K.
- **Fig. S5** Evolution of the electronic absorption spectra of 1 in the presence of excess triethylamine in CH₃CN.
- Fig. S6 FT-IR spectrum of 1 as a KBr pellet.
- Fig. S7 FT-IR spectrum of 2 as a KBr pellet.
- Fig. S8 Cyclic voltammogram (black solid line) 1 (10⁻³ M) in CH₃CN containing 0.1 M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 100 mV s⁻¹. The potentials are *versus* Ag/AgCl.
- Fig. S9 Cyclic voltammogram (black solid line) 2 (10⁻³ M) in CH₃CN containing 0.1 M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 100 mV s⁻¹. The potentials are *versus* Ag/AgCl.
- Fig. S10 X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR parameters: microwave frequency, 9.438 GHz; incident microwave power, 0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G; receiver gain, 2×10^2 .
- **Fig. S11** The ¹H-NMR spectrum of conversion of styrene to styrene oxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S12** The ¹H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene oxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S13** ¹H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide in CDCl₃ solution. The reaction was performed in the air.

Table S1.UV–Vis. and electrochemical data for 1 and 2.

- **Fig. S14** ¹H-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S15** ¹H-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S16** ¹H-NMR spectrum of conversion of norbornene to norbornene epoxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S17** ¹H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S18** ¹H-NMR spectrum of conversion of cyclohexenone to 1,2epoxycyclohexenone in CDCl₃ solution. The reaction was performed in air.
- **Fig. S19** ¹H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S20** ¹H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-penten-2-one oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S21** ¹H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1one oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S22** ¹H-NMR spectrum of conversion of *trans*-stilbene to *trans*-stilbene oxide in CDCl₃ solution. The reaction was performed in the air.
- **Fig. S23** ¹H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S24** ¹H-NMR spectrum of conversion of 1-hexene to 1-hexene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S25** ¹H-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S26** ¹H-NMR spectrum of conversion of 4-*tert*-butoxystyrene to 4-*tert*-butoxystyrene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S27** ¹H-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S28** ¹H-NMR spectrum of conversion of 4-vinylnapthalene to 4-vinylnapthalene oxide in CDCl₃ solution. The reaction was performed in air.
- **Fig. S29** ¹H-NMR spectrum of conversion of 4-nitrostyrene to 4-nitrostyrene oxide in CDCl₃ solution. The reaction was performed in air.
- Fig. S30Time evolution UV-vis spectra of the epoxide formation reaction performed at
50°C under air using complex 1 as catalyst.

- Fig. S31 Electronic absorption spectrum of 1 (red line) and the green intermediate (green line) in acetonitrile. After performing the reaction at 50°C, the pure green intermediate was purified by column chromatography.
- **Fig. S32** Time evolution ¹H-NMR spectra in CD₃CN of the epoxide formation reaction performed at 50°C under air using complex **1** as catalyst.
- Fig. S33 FT-IR spectrum of 1 (red line) and the green intermediate (green line) as KBr pellet. After performing the reaction at 50°C, the pure green intermediate was purified by column chromatography.
- Fig. S34 ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V) in CH₃CN shows the (a) isotopic distribution pattern (simulated) and (b) measured spectrum with isotopic distribution pattern (experimental).
- **Fig. S35** ¹H-NMR spectrum of styrene oxide in CDCl₃ solution.
- Fig. S36 ${}^{13}C {}^{1}H$ -NMR spectrum of styrene oxide in CDCl₃ solution.
- **Fig. S37** ¹H-NMR spectrum of cyclohexene oxide in CDCl₃ solution.
- **Fig. S38** $^{13}C \{^{1}H\}$ -NMR spectrum of cyclohexene oxide in CDCl₃ solution.
- **Fig. S39** ¹H-NMR spectrum of cyclooctene oxide in CDCl₃ solution.
- Fig. S40 ${}^{13}C {}^{1}H$ -NMR spectrum of cyclooctene oxide in CDCl₃ solution.

Compound	UV–vis. Data ^{<i>a</i>}	Electrochemical data ^{<i>a,b</i>}		
	λ_{max} / nm (ϵ / M ⁻¹ cm ⁻¹)	Oxidation	Reduction	
		E^{0} , V ($\Delta E_{\rm p}$, mV)	E^{0} , V ($\Delta E_{\rm p}$, mV)	
1	437 (128500), 541 (9200),	+0.36, +0.52	-0.72	
	606 (29700).			
2	433 (120800), 546 (15400),	+0.38, +0.54	-0.71	
	610 (39900).			

^{*a*} In acetonitrile.

^b The potentials are versus Ag/AgCl.

Compound	g_{iso}	A _{iso} (G)	ΔH (G)
1	2.01509	88	20
2	1.97462	86	24

Entry	Catalyst	Styrene	Oxidant	Solvent	Time	Temp.	% Conv. ^c
	(µmol)	(mmol)	(mmol)	(mL /ratio)	(h)	(°C)	
1	-	5	H ₂ O ₂ , 15	MeCN, 5	6	50	12
2	1	5	H ₂ O ₂ , 15	MeCN, 5	5	RT	0
3	1	5	H ₂ O ₂ , 15	MeCN, 5	5	60	71
4	1	5	H ₂ O ₂ , 15	MeCN, 5	5	40	66
5	1	5	TBHP, 15	MeCN:H ₂ O, 3:2	1	50	45
6	1	5	H ₂ O ₂ , 15	MeCN:H ₂ O, 3:2	0.5	50	24
7	1	5	H ₂ O ₂ , 15	MeCN:H ₂ O, 3:2	1	50	82
8	1	5	H ₂ O ₂ , 10	MeCN:H ₂ O, 3:2	1	50	79
9	1	5	H ₂ O ₂ , 5	MeCN:H ₂ O, 3:2	1	50	54
10	1	10	H ₂ O ₂ , 15	MeCN:H ₂ O, 3:2	1	50	41
11	1	15	H ₂ O ₂ , 15	MeCN:H ₂ O, 3:2	1	50	33
^b 12	1	5	H ₂ O ₂ , 15	MeCN:H ₂ O, 3:2	1	50	75

Table S3.Optimization of styrene epoxidationa under variable reaction conditions using
oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.

^a Under air, Amount of KHCO₃ used = 150 mg (1.5 mmol). ^b under nitrogen atmosphere. ^c % of conversion was established by ¹H NMR.

Fig. S1 ESI-MS spectrum of oxo[5,10,15- tris(4-cyanophenyl)corrolato] vanadium (IV), 1 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).

Chemical Formula: C₃₉H₂₀BrN₆OV

Fig. S2 ESI-MS spectrum of oxo[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)corrolato] vanadium (IV), 2 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).

Fig. S3 Electronic absorption spectrum of **1** in acetonitrile at 298K.

Fig. S4 Electronic absorption spectrum of **2** in acetonitrile at 298K.

Fig. S5 Evolution of the electronic absorption spectra of **1** in the presence of excess triethylamine in CH₃CN.

Fig. S6 FT-IR spectrum of 1 as a KBr pellet.

FT-IR spectrum of **2** as a KBr pellet.

Fig. S8 Cyclic voltammogram (black solid line) 1 (10⁻³ M) in CH₃CN containing 0.1 M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 100 mV s⁻¹. The potentials are *versus* Ag/AgCl.

Fig. S9 Cyclic voltammogram (black solid line) 2 (10⁻³ M) in CH₃CN containing 0.1 M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 100 mV s⁻¹. The potentials are *versus* Ag/AgCl.

Fig. S10 X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR parameters: microwave frequency, 9.438 GHz; incident microwave power, 0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G; receiver gain, 2×10^2 .

Fig. S11 ¹H-NMR spectrum of conversion of styrene to styrene oxide in CDCl₃ solution. The reaction was performed in the air.

Fig. S12¹H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene oxide
in CDCl₃ solution. The reaction was performed in air.

Fig. S13 ¹H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S14 ¹H-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S15 ¹H-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDCl₃ solution. The reaction was performed in air.

Fig. S16 ¹H-NMR spectrum of conversion of norbornene to norbornene epoxide in CDCl₃ solution. The reaction was performed in air.

Fig. S17 ¹H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S18 ¹H-NMR spectrum of conversion of cyclohexenone to 1,2epoxycyclohexenone in CDCl₃ solution. The reaction was performed in air.

Fig. S19 ¹H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S20 ¹H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-penten-2-one oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S21 ¹H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1one oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S221H-NMR spectrum of conversion of *trans*-stilbene to *trans*-stilbene oxide in
CDCl3 solution. The reaction was performed in air.

Fig. S23 ¹H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S24 ¹H-NMR spectrum of conversion of 1-hexene to 1-hexene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S25 ¹H-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S26 ¹H-NMR spectrum of conversion of 4-*tert*-butoxystyrene to 4-*tert*-butoxystyrene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S27 ¹H-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S28 ¹H-NMR spectrum of conversion of 4-vinylnapthalene to 4-vinylnapthalene oxide in CDCl₃ solution. The reaction was performed in air.

Fig. S291H-NMR spectrum of conversion of 4-nitrostyrene to 4-nitrostyrene oxide in
CDCl3 solution. The reaction was performed in air.

Fig. S30Time evolution UV-vis spectra of the epoxide formation reaction performed at
50°Cunder air using complex 1 as a catalyst.

Fig. S31 Electronic absorption spectrum of 1 (red line) and the green intermediate (green line) in acetonitrile. After performing the reaction at 50°C, the pure green intermediate was purified by column chromatography.

Fig. S32 Time evolution ¹H-NMR spectra in CD₃CN of the epoxide formation reaction performed at 50°C under air using complex **1** as catalyst.

Fig. S33 FT-IR spectrum of **1** (red line) and the green intermediate (green line) as KBr pellet. After performing the reaction at 50°C, the pure green intermediate was purified by column chromatography.

Fig. S34 ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V) in CH₃CN shows the (a) isotopic distribution pattern (simulated) and (b) measured spectrum with isotopic distribution pattern (experimental).

Fig. S35 ¹H-NMR spectrum of styrene oxide in CDCl₃ solution.

Fig. S36 ${}^{13}C {}^{1}H$ -NMR spectrum of styrene oxide in CDCl₃ solution.

Fig. S37 ¹H-NMR spectrum of cyclohexene oxide in CDCl₃ solution.

Fig. S38 ${}^{13}C {}^{1}H$ -NMR spectrum of cyclohexene oxide in CDCl₃ solution.

Fig. S39 ¹H-NMR spectrum of cyclooctene oxide in CDCl₃ solution.

Fig. S40 ${}^{13}C {}^{1}H$ -NMR spectrum of cyclooctene oxide in CDCl₃ solution.