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Table S1. UVVis.  and electrochemical data for 1 and 2.

Table S2. EPR data for 1 and 2.

Table S3. Optimization of styrene epoxidationa under variable reaction conditions using 

oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.

Fig. S1 ESI-MS spectrum of oxo[5,10,15- tris(4-cyanophenyl)corrolato] 

vanadium(IV), 1 in CH3CN shows the (a) measured spectrum with isotopic 

distribution pattern (experimental) and (b) isotopic distribution pattern 

(simulated).

Fig. S2 ESI-MS spectrum of oxo[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-

corrolato] vanadium(IV), 2 in CH3CN shows the (a) measured spectrum with 

isotopic distribution pattern (experimental) and (b) isotopic distribution pattern 

(simulated).

Fig. S3 Electronic absorption spectrum of 1 in acetonitrile at 298K.

Fig. S4 Electronic absorption spectrum of 2 in acetonitrile at 298K.

Fig. S5 Evolution of the electronic absorption spectra of 1 in the presence of excess 

triethylamine in CH3CN.

Fig. S6 FT-IR spectrum of 1 as a KBr pellet.

Fig. S7 FT-IR spectrum of 2 as a KBr pellet.

Fig. S8 Cyclic voltammogram (black solid line) 1 (10−3 M) in CH3CN containing 0.1 

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 

100 mV s−1. The potentials are versus Ag/AgCl.

Fig. S9 Cyclic voltammogram (black solid line) 2 (10−3 M) in CH3CN containing 0.1 

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 

100 mV s−1. The potentials are versus Ag/AgCl.

Fig. S10 X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR 

parameters: microwave frequency, 9.438 GHz; incident microwave power, 

0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G; 

receiver gain, 2 × 102. 

Fig. S11 The 1H-NMR spectrum of conversion of styrene to styrene oxide in CDCl3 

solution. The reaction was performed in the air.

Fig. S12 The 1H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene 

oxide in CDCl3 solution. The reaction was performed in the air.

Fig. S13 1H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide 

in CDCl3 solution. The reaction was performed in the air.
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Fig. S14 1H-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in 

CDCl3 solution. The reaction was performed in the air.

Fig. S15 1H-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDCl3 

solution. The reaction was performed in the air.

Fig. S16 1H-NMR spectrum of conversion of norbornene to norbornene epoxide in 

CDCl3 solution. The reaction was performed in the air.

Fig. S17 1H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in 

CDCl3 solution. The reaction was performed in air.

Fig. S18 1H-NMR spectrum of conversion of cyclohexenone to 1,2-

epoxycyclohexenone  in CDCl3 solution. The reaction was performed in air.

Fig. S19 1H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide 

in CDCl3 solution. The reaction was performed in the air.

Fig. S20 1H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-

penten-2-one oxide in CDCl3 solution. The reaction was performed in air.

Fig. S21 1H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1-

one oxide in CDCl3 solution. The reaction was performed in air.

Fig. S22 1H-NMR spectrum of conversion of trans-stilbene to trans-stilbene oxide in 

CDCl3 solution. The reaction was performed in the air.

Fig. S23 1H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene 

oxide in CDCl3 solution. The reaction was performed in air.

Fig. S24 1H-NMR spectrum of conversion of 1-hexene to 1-hexene oxide in CDCl3 

solution. The reaction was performed in air.

Fig. S25 1H-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide 

in CDCl3 solution. The reaction was performed in air.

Fig. S26 1H-NMR spectrum of conversion of 4-tert-butoxystyrene to 4-tert-

butoxystyrene oxide in CDCl3 solution. The reaction was performed in air.

Fig. S27 1H-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in 

CDCl3 solution. The reaction was performed in air.

Fig. S28 1H-NMR spectrum of conversion of 4-vinylnapthalene to 4-vinylnapthalene 

oxide in CDCl3 solution. The reaction was performed in air.

Fig. S29 1H-NMR spectrum of conversion of 4-nitrostyrene to 4-nitrostyrene oxide in 

CDCl3 solution. The reaction was performed in air.

Fig. S30 Time evolution UV−vis spectra of the epoxide formation reaction performed at 

50°C under air using complex 1 as catalyst.
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Fig. S31 Electronic absorption spectrum of 1 (red line) and the green intermediate 

(green line)  in acetonitrile. After performing the reaction at 50°C, the pure 

green intermediate was purified by column chromatography.

Fig. S32 Time evolution 1H-NMR spectra  in CD3CN of the epoxide formation reaction 

performed at 50°C under air using complex 1 as catalyst.

Fig. S33 FT-IR spectrum of 1 (red line) and the green intermediate (green line) as KBr 

pellet. After performing the reaction at 50°C, the pure green intermediate 

was purified by column chromatography.

Fig. S34 ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V) 

in CH3CN shows the (a) isotopic distribution pattern (simulated) and (b) 

measured spectrum with isotopic distribution pattern (experimental).

Fig. S35 1H-NMR spectrum of styrene oxide in CDCl3 solution.

Fig. S36 13C {1H}-NMR spectrum of styrene oxide in CDCl3 solution.

Fig. S37 1H-NMR spectrum of cyclohexene oxide in CDCl3 solution.

Fig. S38 13C {1H}-NMR spectrum of cyclohexene oxide in CDCl3 solution.

Fig. S39 1H-NMR spectrum of cyclooctene oxide in CDCl3 solution.

Fig. S40 13C {1H}-NMR spectrum of cyclooctene oxide in CDCl3 solution.
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Table S1. UV-Vis.  and electrochemical data for 1 and 2.

a In acetonitrile.
b The potentials are versus Ag/AgCl.

Electrochemical dataa,bCompound UVvis. Data a

max / nm ( / M1cm1) Oxidation

E0
, V (Ep, mV)

Reduction

E0
, V (Ep, mV)

1 437 (128500), 541 (9200), 

606 (29700).

+ 0.36, + 0.52 -0.72

2 433 (120800), 546 (15400), 

610 (39900).

+ 0.38, + 0.54 -0.71
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Table S2. EPR data for 1 and 2.

Compound giso Aiso(G) ΔH (G)

1 2.01509 88            20 

2 1.97462 86 24
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Table S3. Optimization of styrene epoxidationa under variable reaction conditions using 

oxo(corrolato)vanadium(IV) complex, 2 as the catalyst.

Entry Catalyst 

(µmol)

Styrene

(mmol)

Oxidant 

(mmol)

Solvent

(mL /ratio)

Time

(h)

Temp.

(˚C)

% Conv.c

1 - 5 H2O2, 15 MeCN, 5 6 50 12

2 1 5 H2O2, 15 MeCN, 5 5 RT 0

3 1 5 H2O2, 15 MeCN, 5 5 60 71

4 1 5 H2O2, 15 MeCN, 5 5 40 66

5 1 5 TBHP, 15 MeCN:H2O, 3:2 1 50 45

6 1 5 H2O2, 15 MeCN:H2O, 3:2 0.5 50 24

7 1 5 H2O2, 15 MeCN:H2O, 3:2 1 50 82

8 1 5 H2O2, 10 MeCN:H2O, 3:2 1 50 79

9 1 5 H2O2, 5 MeCN:H2O, 3:2 1 50 54

10 1 10 H2O2, 15 MeCN:H2O, 3:2 1 50 41

11 1 15 H2O2, 15 MeCN:H2O, 3:2 1 50 33

b12 1 5 H2O2, 15 MeCN:H2O, 3:2 1 50 75

a Under air, Amount of KHCO3 used = 150 mg (1.5 mmol). b under nitrogen atmosphere. c % 

of conversion was established by 1H NMR.
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Fig. S1 ESI-MS spectrum of oxo[5,10,15- tris(4-cyanophenyl)corrolato] vanadium 

(IV), 1 in CH3CN shows the (a) measured spectrum with isotopic distribution 

pattern (experimental) and (b) isotopic distribution pattern (simulated).
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Fig. S2 ESI-MS spectrum of oxo[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-

corrolato] vanadium (IV), 2 in CH3CN shows the (a) measured spectrum with 

isotopic distribution pattern (experimental) and (b) isotopic distribution pattern 

(simulated).
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Fig. S3 Electronic absorption spectrum of 1 in acetonitrile at 298K.
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Fig. S4 Electronic absorption spectrum of 2 in acetonitrile at 298K.
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Fig. S5 Evolution of the electronic absorption spectra of 1 in the presence of excess 

triethylamine in CH3CN.
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Fig. S6 FT-IR spectrum of 1 as a KBr pellet.
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          Fig. S7 FT-IR spectrum of 2 as a KBr pellet.
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Fig. S8 Cyclic voltammogram (black solid line) 1 (10−3 M) in CH3CN containing 0.1 

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 

100 mV s−1. The potentials are versus Ag/AgCl.
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Fig. S9 Cyclic voltammogram (black solid line) 2 (10−3 M) in CH3CN containing 0.1 

M tetrabutylammonium perchlorate (TBAP) at 298 K. The scan rate used was 

100 mV s−1. The potentials are versus Ag/AgCl.
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Fig. S10 X-band EPR spectrum of 2 was recorded in acetonitrile at 298 K. EPR 

parameters: microwave frequency, 9.438 GHz; incident microwave power, 

0.720 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G; 

receiver gain, 2 × 102. 
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Fig.  S11 1H-NMR spectrum of conversion of styrene to styrene oxide in CDCl3 

solution. The reaction was performed in the air.
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Fig. S12 1H-NMR spectrum of conversion of 4-methylstyrene to 4-methylstyrene oxide 

in CDCl3 solution. The reaction was performed in air.
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Fig. S13 1H-NMR spectrum of conversion of 4-chlorostyrene to 4-chlorostyrene oxide 

in CDCl3 solution. The reaction was performed in air.
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Fig. S14 1H-NMR spectrum of conversion of cyclohexene to cyclohexene oxide in 

CDCl3 solution. The reaction was performed in air.
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Fig. S15 1H-NMR spectrum of conversion of 1-octene to 1,2-epoxyoctane in CDCl3 

solution. The reaction was performed in air.
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Fig. S16 1H-NMR spectrum of conversion of norbornene to norbornene epoxide in 

CDCl3 solution. The reaction was performed in air.
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Fig. S17 1H-NMR spectrum of conversion of cyclooctene to cyclooctene oxide in 

CDCl3 solution. The reaction was performed in air.



25

Fig. S18 1H-NMR spectrum of conversion of cyclohexenone to 1,2-

epoxycyclohexenone  in CDCl3 solution. The reaction was performed in air.
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Fig. S19 1H-NMR spectrum of conversion of 4-bromostyrene to 4-bromostyrene oxide 

in CDCl3 solution. The reaction was performed in air.
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Fig. S20 1H-NMR spectrum of conversion of 4-methyl-3-penten-2-one to 4-methyl-3-

penten-2-one oxide in CDCl3 solution. The reaction was performed in air.
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Fig. S21 1H-NMR spectrum of conversion of 2-Cyclopenten-1-one to 2-Cyclopenten-1-

one oxide in CDCl3 solution. The reaction was performed in air.
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Fig. S22 1H-NMR spectrum of conversion of trans-stilbene to trans-stilbene oxide in 

CDCl3 solution. The reaction was performed in air.
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Fig. S23 1H-NMR spectrum of conversion of 6-bromo-1-hexene to 6-bromo-1-hexene 

oxide in CDCl3 solution. The reaction was performed in air.
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Fig. S24 1H-NMR spectrum of conversion of 1-hexene to 1-hexene oxide in CDCl3 

solution. The reaction was performed in air.
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Fig. S25 1H-NMR spectrum of conversion of 3-bromopropene to 3-bromopropene oxide 

in CDCl3 solution. The reaction was performed in air.
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Fig. S26 1H-NMR spectrum of conversion of 4-tert-butoxystyrene to 4-tert-

butoxystyrene oxide in CDCl3 solution. The reaction was performed in air.
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Fig. S27 1H-NMR spectrum of conversion of 4-vinylaniline to 4-vinylaniline oxide in 

CDCl3 solution. The reaction was performed in air.



35

Fig. S28 1H-NMR spectrum of conversion of 4-vinylnapthalene to 4-vinylnapthalene 

oxide in CDCl3 solution. The reaction was performed in air.
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Fig. S29 1H-NMR spectrum of conversion of 4-nitrostyrene to 4-nitrostyrene oxide in 

CDCl3 solution. The reaction was performed in air.
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Fig. S30 Time evolution UV−vis spectra of the epoxide formation reaction performed at 

50°Cunder air using complex 1 as a catalyst.
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Fig. S31 Electronic absorption spectrum of 1 (red line) and the green intermediate 

(green line) in acetonitrile. After performing the reaction at 50°C, the pure 

green intermediate was purified by column chromatography.
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Fig. S32 Time evolution 1H-NMR spectra  in CD3CN of the epoxide formation reaction 

performed at 50°C under air using complex 1 as catalyst.
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Fig. S33 FT-IR spectrum of 1 (red line) and the green intermediate (green line) as KBr 

pellet. After performing the reaction at 50°C, the pure green intermediate 

was purified by column chromatography.
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Fig. S34 ESI-MS spectrum of green intermediate, oxo(peroxo)(corrolato)vanadium(V) 

in CH3CN shows the (a) isotopic distribution pattern (simulated) and (b) 

measured spectrum with isotopic distribution pattern (experimental).
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Fig. S35 1H-NMR spectrum of styrene oxide in CDCl3 solution.
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Fig. S36 13C {1H}-NMR spectrum of styrene oxide in CDCl3 solution.
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Fig. S37 1H-NMR spectrum of cyclohexene oxide in CDCl3 solution.
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Fig. S38 13C {1H}-NMR spectrum of cyclohexene oxide in CDCl3 solution.
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Fig. S39 1H-NMR spectrum of cyclooctene oxide in CDCl3 solution.



47

Fig. S40 13C {1H}-NMR spectrum of cyclooctene oxide in CDCl3 solution.


