Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A phenanthridine-based probe for selective detection of hypochlorite ion

^aSaravanan Enbanathan, ^{a,b} Saravanakumar Manickam, Sathishkumar Munusamy^c,

^aDhanapal Jothi, ^aSelin Manoj kumar and Sathiyanarayanan Kulathu Iyer^a*

^aDepartment of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632 014, India. E-mail: <u>sathiya_kuna@hotmail.com</u> ^bDepartment of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602 105, Tamil Nadu and India. ^cInstitute of chemical biology and nanomedicine, State key laboratory of chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China. E-mail: pra3sat@gmail.com

Table of contents

SI Figure S1 ¹H NMR spectra of PBC

SI Figure S2¹³C NMR spectra of PBC

SI Figure S3 ¹H NMR spectra of PBO

SI Figure S4¹³C NMR spectra of PBO

SI Figure S5 HRMS spectra of PBO

SI Figure S6 Emission spectrum of PBO with OCl- ion

SI Figure S7 HPLC based reaction tracking of PBO with OCI-.

SI Figure S8 FTIR spectra changes of PBO upon the addition of OCl- ion

SI Figure S9 HRMS spectra of PBO + OCl⁻ ion

SI Figure S10 Cytotoxicity of PBO

SI Figure S1 ¹H NMR spectra of PBC

SI Figure S2¹³C NMR spectra of PBC

PBO

 $\begin{array}{c} 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.381\\ 1.333\\ 1.$

SI Figure S4 ¹³C NMR spectrum of PBO

SI Figure S5 HRMS spectra of PBO

SI Figure S6 Emission spectrum of PBO with OCl- ion

HPLC method details

HPLC model = Acquity – H class UPLC

Column = Reverse phase Hypersil C18 - 5mm (particle size) and 150mm length

PDA-detector range 190-600nm

Moblie phase = Isocratic [Acetonitrie: H2O (9:1)]

Run time = $20 \min$

SI Figure S7 HPLC based reaction tracking of PBO with OCI-.

SI Figure S8 FTIR spectra changes of PBO upon the addition of OCI ion

SI Figure S9 HRMS spectra of PBO + OCI- ion

SI Figure S10 Cytotoxicity of PBO

SI Table S1 the	comparison table	of probe PBC) for detection	of OCl ⁻ ion in	n previous	and
present reports						

Name of the sensor	Solvent/supporte	Method used	Detectio	Application	References
probe	d		n limit		
	systems				
	EtOH: H2O ¼ 1:1	Fluorescence	80 nM.	Cell imaging	Analytica Chimica Acta 1078 (2019) 135e141
	DMF: PBS (5: 5, V/V]	Fluorescence	1.9 μM	Cell imaging	Sensors and Actuators B 255 (2018) 666–671
	HOCL (0–30 _M) in PBS buffer (PH 7.4, containing 50% EtOH as a co solvent).	Fluorescence	0.72 μM	Cell imaging	Sensors and Actuators B 255 (2018) 963–969
	PBS buffer (10.0 MM, PH = 7.4) containing 20% EtOH	Fluorescence	1.7 μΜ	Cell imaging	Sensors and Actuators B 260 (2018) 146–155

NH2 NH2 CN	DMSO–water solution	Fluorescence	0.5 μΜ	Cell imaging	Sensors and Actuators B 265 (2018) 365–370
	DMF–PBS buffer (10 mM, pH ¹ / ₄ 7.4, 1: 1, v/v)	Fluorescence	0.58 μM.	Cell imaging	Anal. Methods, 2017, 9, 864
	DMF/PBS solution (v/v = 3/7, pH = 7.4	Fluorescence	0.136 μM	Cell imaging	Analyst, 2019, DOI: 10.1039/c9an01981b
	potassium phosphate buffer, pH 9.0/DMF	Fluorescence		Cell imaging	Chem. Eur. J. 2009, 15, 2305 – 2309
	0.1 M Na ₂ CO ₃ - NaHCO ₃ buffer- DMF solution (30:1 v/v, pH = 9.0, rt.,	Fluorescence	5×10 ⁻⁵ M	Cell imaging	JFluoresc DOI 10.1007/s10895- 015-1734-7
	PBS buffer (pH 7.4, 20mM, containing 0.5% DMSO)	Fluorescence	0.79µM	Cell imaging	Sensors and Actuators B: Chemical (2015), doi. 10.1016/j.snb.2015.08 .098
O NH ₂ O NH ₂ O NH ₂	H3CN–HEPES buffer (Ph =7, v/v=1: 1)	Fluorescence		Cell imaging	RSC Adv., 2014,4, 44610–44613 DOI: 10.1039/c4ra06435f
OH HO HO COO ⁻	DMSO–H ₂ O solution (1: 9, v/v, 10 mM HEPES, pH 7.05)	Fluorescence		Cell imaging	Chem. Commun., 2011, 47, 11978– 11980 DOI: 10.1039/c1cc15214a
	Acetonitrile: water 9:1	Fluorescence	8 nM	Cell imaging	Present work

SI Table S2 HOMO, LUMO energy level of PBO and PBO+OCI-

Fluorophore	Homo(eV)	Lumo(eV)	Energy gap(ΔE)
PBO	4.60	1.91	2.69
PBO+OCl ⁻	6.03	2.40	3.63

SI Table S3 Cell viability (%) (in triplicates) of PBO.

S. No	Tested sample concentration (µg/ml)	Cell viability (%) (in triplicates)			Mean Value (%)
1.	Control	100	100	100	100
2.	500 µg/ml	1.74129	1.64884	1.31485	1.5683297
3.	400 µg/ml	18.2587	20.6774	16.8443	18.593473
4.	300 µg/ml	39.1045	42.9144	36.8515	39.623458
5.	200 µg/ml	54.6269	57.9323	51.4925	54.683889
6.	100 µg/ml	72.9353	65.6417	53.6958	64.090947
7.	50µg/ml	75.5224	68.6275	55.0107	66.386833
8.	25 µg/ml	77.6119	70.7665	57.3916	68.590014
9.	10 µg/ml	81.0945	75.5348	61.7271	72.785455
10.	5 µg/ml	87.6119	80.8378	68.6567	79.035482
11.	1 μg/ml	97.6119	101.604	92.3241	97.180104