

Mechanism of Halide Exchange in Reactions of CpRu(PPh₃)₂Cl with Alkyl Halides

Benjamin S. Rich, Noah B. Bissonnette, Alejandra Duran, Mulan Yang, Hope Meikle, Nithin Chintala, Sijia S. Dong* and Rein U. Kirss*

Department of Chemistry and Chemical Biology Northeastern University, Boston MA 02115.

Table of Contents

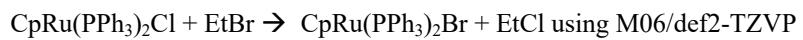

Experimental Procedures and Characterization of 2a-e and 3a-e	S3
Derivation of the Rate Law	S6
Table S1: Summary of Observed Rate Constants for the Reaction Between CpRu(PPh ₃) ₂ Cl (10.5 mM) and Organic Halides in C ₆ H ₅ F/10% C ₆ D ₆	S7
Table S2: Summary of Observed Rate Constants for the Reaction Between CpRu(PPh ₃) ₂ Cl and Bromobutane in C ₆ H ₅ F/10% C ₆ D ₆	S8
Figure S1: Representative plot of ln[1a] vs time (s) for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane at 44.5°C	S9
Figure S2: Effect of radical traps, initiators and excess PPh ₃ on k _{obs} for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d ⁶	S9
Figure S3: Eyring plot lnk _{obs} /T vs 1/T for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane in fluorobenzene/10% benzene-d ⁶	S10
Figure S4: Plot of k _{obs} vs [DHA] for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d ⁶	S11
Figure S5: Plot of ln[1a] vs time (s) for the reaction between CpRu(PPh ₃) ₂ Cl and methyldiphenylphosphine at 44.5°C in fluorobenzene/10% benzene-d ⁶	S12
Figure S6: Plot of ln[1a] vs time (s) for the reaction between CpRu(PPh ₃) ₂ Cl and bromide ion at 44.5°C in fluorobenzene/10% benzene-d ⁶	S12
Figure S7: Plot of k _{obs} vs [ⁿ butylbromide] for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d ⁶	S13
Figure S8: Plot of lnk _{obs} vs ln[ⁿ butylbromide] for the reaction between CpRu(PPh ₃) ₂ Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d ⁶	S13

Table S3 Calculated Free Energies (ΔG , kJ/mol) for Intermediates in the Reaction:

S14

Table S4 Calculated Free Energies (ΔG and ΔH , kJ/mol) for Intermediates in the Reaction:

References

S15

Experimental

All compounds described in this work were handled using Schlenk techniques or a M. I. Braun glove box under purified nitrogen atmospheres. $\text{RuCl}_3 \cdot x\text{H}_2\text{O}$ was purchased from Pressure Chemical, Inc. Tertiary phosphines, cyclopentadiene, 1-bromobutane, 1-iodopropane, duraquinone, and dihydroanthracene (Fischer Acros Chemical, Inc.) were used as received. Solvents were purified by refluxing over Na/benzophenone (toluene, tetrahydrofuran, benzene, hexane, pentane), P_2O_5 (dichloromethane) or MgSO_4 (ethanol) and distilled prior to use. Chloroform-d¹, toluene-d⁸, and benzene-d⁶ (Cambridge Isotope Laboratories) were purified by distillation from CaH_2 (CDCl_3) or Na/benzophenone. Fluorobenzene (Fisher-Acros) was distilled from P_2O_5 . For synthesis, ⁿbutyl bromide and ⁿpropyl iodide were used as received. Cyclopentadienylruthenium (II) phosphine compounds $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ (**1a**), ¹ $\text{CpRu}(\text{P}\{p\text{-CH}_3\text{C}_6\text{H}_4\}_3)_2\text{Cl}$ (**1b**), ^{2a} $\text{CpRu}(\text{P}\{p\text{-CH}_3\text{OC}_6\text{H}_4\}_3)_2\text{Cl}$ (**1c**), ^{2b} $\text{CpRu}(\text{P}\{p\text{-FC}_6\text{H}_4\}_3)_2\text{Cl}$ (**1d**), ^{2c} and $\text{CpRu}[\text{PPh}_2(\text{p-CH}_3\text{C}_6\text{H}_4)]_2\text{Cl}$ (**1e**), ^{2c} were prepared by literature procedures. For comparison, samples of $\text{CpRu}(\text{PPh}_3)_2\text{Br}$ (**2a**) and $\text{CpRu}(\text{PPh}_3)_2\text{I}$ (**3a**) were also prepared by published methods. ³ Melting points were determined in capillary tubes using a Stanford Research Systems Digimelt apparatus. Elemental analyses (C, H) were performed by Columbia Analytical Services, Inc. Tucson, AZ.

NMR spectra were recorded at 400 MHz for ¹H, 162 MHz for ³¹P {¹H} and 376 MHz for ¹⁹F on a Mercury XL300 spectrometer. Proton chemical shifts are reported relative to residual protons in the solvent (CD_2HCl at δ 7.24 ppm or $\text{C}_6\text{D}_5\text{H}$ at δ 7.15 ppm relative to TMS at 0.00 ppm). Phosphorus chemical shifts are reported relative to 85% H_3PO_4 at 0.0 ppm. A HP6890 Series GC (Agilent HO-1 dimethylpolysiloxane column, 25 m x 0.200 nm x 0.4 μm) coupled with a HP5973 mass selective detector was used for the gc/ms experiments.

*Synthesis of $\text{CpRu}(\text{PPh}_3)_2\text{Br}$ (**2a**)*

50.0 mg $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ (0.069 mmol) and 48 μL ⁿBuBr (0.447 mmol) yielded 52.8 mg $\text{CpRu}(\text{PPh}_3)_2\text{Br}$ (100%) as an orange solid. ¹H and ³¹P NMR spectra are consistent with those reported in the literature. ¹H (CDCl_3): δ 7.34 (br, 12H, aryl), 7.24 (dd, J = 6.8, 8.8 Hz, 6 H, aryl), 7.14 (d, J = 6.8 Hz, 12H, aryl), 4.12 s (5H, Cp). ³¹P {¹H} (CDCl_3): δ 37.6 (s)

*Synthesis of $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{Br}$ (**2b**)*

65.0 mg $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{Cl}$ (0.080 mmol) and 60 μL ⁿBuBr (0.559 mmol) yielded 47.6 mg $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{Br}$ (73%) as an orange solid. M.p. 137-139°C d. ¹H (400 Mz, CDCl_3): δ 7.23 (m, 12H, aryl), 6.91 (d, J = 7.2 Hz, 12H, aryl), 4.08 (s, 5H, Cp), 2.30 (s, 18H, CH_3). ³¹P {¹H} (162 MHz, CDCl_3): δ 36.8 (s) Anal. Calcd for $\text{C}_{47}\text{H}_{47}\text{P}_2\text{BrRu}$: C, 66.04%; H, 5.54%. Found: C, 66.02%; H, 5.65%.

*Synthesis of $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{I}$ (**3b**)*

93.0 mg $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{Cl}$ (0.113 mmol) and 115 μL ⁿPrI (1.18 mmol) yielded 63.7 mg $\text{CpRu}[\text{P}(p\text{-CH}_3\text{C}_6\text{H}_4)_3]_2\text{I}$ (62%) as a red solid. Rec-crystallization from toluene leads to one equivalent of toluene in the

crystalline product. M.p. 132-134°C d. ^1H (400 Mz, CDCl_3): δ 7.17 (br s, 12 Hz, 12H, aryl), 6.93 (d, J = 7.6 Hz, 12H, aryl), 4.15 (s, 5H, Cp), 2.36 (s, 3H, toluene), 2.32 (s, 18H, CH_3). The aryl resonances for the coordinated toluene are seen at 7.24 and 7.28 are assigned by comparison with the spectrum of toluene in CDCl_3 (7.31 d, 7.23 d, J = 7.6 Hz). Both of the coordinated toluene aryl resonances are obscured by the CHCl_3 resonance from the solvent. $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl_3): δ 34.6 s

Anal. Calcd for $\text{C}_{47}\text{H}_{47}\text{P}_2\text{IRu}\bullet\text{C}_7\text{H}_8$: C, 65.26%; H, 5.58%. Found: C, 64.96%; H, 5.63%.

Synthesis of $\text{CpRu}[\text{P}(p\text{-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{Br}$ (2c)

118 mg $\text{CpRu}[\text{P}(\text{p-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{Cl}$ (0.130 mmol) and 98 μL $^n\text{BuBr}$ (0.913 mmol) yielded 90.9 mg $\text{CpRu}[\text{P}(\text{p-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{Br}$ (73%) as an orange solid M.p. 149-152°C d. ^1H (400 Mz, CDCl_3): δ 7.28 (m, 12H, aryl), 6.66 (d, J = 8.8 Hz, 12H, aryl), 4.11 (s, 5H, Cp), 3.78 (s, 18H, CH_3O). $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl_3): δ 35.59 (s)

Anal. Calcd for $\text{C}_{47}\text{H}_{47}\text{O}_6\text{P}_2\text{BrRu}$: C, 59.37%; H, 4.98%. Found: C, 58.99%; H, 5.28%

Synthesis of $\text{CpRu}[\text{P}(p\text{-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{I}$ (3c)

80.5 mg $\text{CpRu}[\text{P}(\text{p-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{Cl}$ (0.089 mmol) and 61 μL ^nPrI (0.625 mmol) yielded 75.7 mg $\text{CpRu}[\text{P}(\text{p-CH}_3\text{OC}_6\text{H}_4)_3]_2\text{I}$ (85%) as an orange solid M.p. 132-134°C d. ^1H (400 Mz, CDCl_3): δ 7.28 (m, 12H, aryl), 6.67 (d, J = 8.8 Hz, 12H, aryl), 4.18 (s, 5H, Cp), 3.77 (s, 18H, CH_3O). $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl_3): δ 34.5 (s)

Anal. Calcd for $\text{C}_{47}\text{H}_{47}\text{O}_6\text{P}_2\text{IRu}$: C, 56.53%; H, 4.75%. Found: C, 56.43%; H, 4.90%.

Synthesis of $\text{CpRu}[\text{P}(p\text{-FC}_6\text{H}_4)_3]_2\text{Br}$ (2d)

110 mg $\text{CpRu}[\text{P}(\text{p-FC}_6\text{H}_4)_3]_2\text{Cl}$ (0.132 mmol) and 100 μL $^n\text{BuBr}$ (0.934 mmol) yielded 114 mg $\text{CpRu}[\text{P}(\text{p-FC}_6\text{H}_4)_3]_2\text{Br}$ (98%) as an orange solid. M.p. 154-156 °C d. ^1H (400 Mz, CDCl_3): δ 7.30 (t, J = 8.8, 12 Hz, 12H, aryl), 6.88 (d, J = 8.8 Hz, 12H, aryl), 4.14 (s, 5H, Cp). $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl_3): δ 36.76 (s)

Anal. Calcd for $\text{C}_{41}\text{H}_{29}\text{F}_6\text{P}_2\text{BrRu}$: C, 56.05%; H, 3.33%. Found: C, 56.00%; H, 3.43%.

Synthesis of $\text{CpRu}[\text{P}(p\text{-FC}_6\text{H}_4)_3]_2\text{I}$ (3d)

80.0 mg $\text{CpRu}[\text{P}(\text{p-FC}_6\text{H}_4)_3]_2\text{Cl}$ (0.096 mmol) and 65.0 μL ^nPrI (0.666 mmol) yielded 86.5 mg $\text{CpRu}[\text{P}(\text{p-FC}_6\text{H}_4)_3]_2\text{I}$ (97%) as an orange solid. M.p. 152-155°C d. ^1H (400 Mz, CDCl_3): δ 7.27 (br, 12H, aryl), 6.90 (d, J = 7.6 Hz, 12H, aryl), 4.21 (s, 5H, Cp). $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl_3): δ 35.7 (s).

Anal. Calcd for $\text{C}_{41}\text{H}_{29}\text{F}_6\text{P}_2\text{IRu}$: C, 53.20%; H, 3.16%. Found: C, 52.79%; H, 3.19%.

Synthesis of $\text{CpRu}[\text{PPh}_2(p\text{-CH}_3\text{C}_6\text{H}_4)]_2\text{Br}$ (2e)

65 mg $\text{CpRu}[\text{PPh}_2(\text{p-CH}_3\text{C}_6\text{H}_4)]_2\text{Cl}$ (0.80 mmol) and 60 μL $^n\text{BuBr}$ (0.56 mmol) yielded 48 mg $\text{CpRu}[\text{PPh}_2(\text{p-CH}_3\text{C}_6\text{H}_4)]_2\text{Br}$ (73%) as a red-orange solid after recrystallization from toluene/petroleum ether. M.p. 137-140° d. The aryl resonances for the phenyl and p-tolyl groups are not completely resolved from one another. In CDCl_3 ^1H (400 Mz, CDCl_3): δ 7.34 (br, J = 8H, aryl), 7.22 (d, J = 6.4 Hz, 8H, aryl), 7.13 (t, 8 H, aryl), 6.94 (d, J = 7.2 Hz, 4H,

aryl), 4.20 (s, 5H, Cp), 2.31 (s, 6 H, CH₃); (C₆D₆): 7.63 (br s, 8H), 7.54 (t, 4H), 6.91 (br s, 12 H), 6.72 (d, J=7.8 Hz, 4H, tolyl), 4.20 (s, 5H, Cp), 1.97 s (6H, tolyl CH₃) ³¹P{¹H}(162 MHz, CDCl₃): δ 36.9 (s); (C₆D₆): 37.8 (s). Anal. Calcd for C₄₃H₃₉P₂BrRu: C, 64.65%; H, 4.92%. Found: C, 64.19%; H, 5.20%.

Synthesis of CpRu[PPh₂(p-CH₃C₆H₄)₂]I (3e)

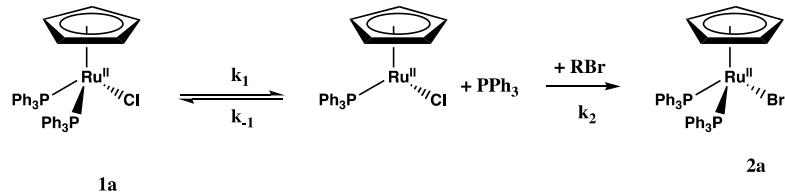
65 mg CpRu[PPh₂(p-CH₃C₆H₄)₂]Cl (0.80 mmol) and 54 μL ⁿPrI (0.56 mmol) yielded 52 mg CpRu[PPh₂(p-CH₃C₆H₄)₂]I (72%) as a red solid after recrystallization from toluene/petroleum ether. M.p. 120-122 °C d ¹H (400 MHz, CDCl₃): δ 7.16-7.29 (m not completely resolved from br s, 12H, aryl), 7.16 (d, J = 7.6 Hz overlapping a likely m at 7.13, 12 H, aryl), 6.96 (d, J = 7.6 Hz, 4H, tolyl), 4.17 (s, 5H, Cp), 2.33 (s, 6 H, tolyl CH₃). ³¹P{¹H} (162 MHz, CDCl₃): δ 36.0 (s).

Anal. Calcd for C₄₃H₃₉P₂IRu: C, 61.07%; H, 4.65%. Found: C, 60.57%; H, 4.76%.

Identification of volatile products

1-Bromobutane (20 μL, 0.19 mmol) and 12 mg (0.016 mmol) **1a** were heated at 100°C in 20 μL fluorobenzene for 5 hours before adding CDCl₃. The ¹H NMR spectrum was compared with spectra of authentic compounds. ¹H (400 MHz, CDCl₃): δ 3.42 (t, CH₃CH₂CH₂CH₂Br), 3.55 (t, CH₃CH₂CH₂CH₂Cl).

A solution of 1-bromohexane (12 μL, 8.5 x 10⁻² mmols) and **1a** (34 mg, 4.6 x 10⁻² mmol) in 5 mL fluorobenzene was refluxed for 7 hours. Analysis of the filtered solution by gc/ms confirmed the presence of 1-chlorohexane.


A 1:1 mixture of 1-chlorohexane and 1-iodobutane containing 5 mol% Cp*Ru(PPh₃)₂Cl in refluxing toluene led to a 1:1:1 mixture of 1-ClC₆H₁₃:1- IC₆H₁₃:1-IC₄H₉ by gc/ms analysis. Whether the more volatile 1-chlorobutane (b.p. 77°C) was lost during analysis or was not detected is not clear.

A solution of 1-bromobutane (20 μL, 0.18 mmols), styrene (21 μL, 0.18 mmol) and **1a** (11 mg, 1.5 x 10⁻² mmol) in 5 mL fluorobenzene was refluxed for 7 hours. No evidence for products resulting from addition of 1-BrC₄H₉ to styrene was observed by gc/ms.

Computational Data

We report the Cartesian coordinates of all the structures optimized using Kohn-Sham density functional theory (M06/def2-SVP) in the xyz format in a separate zip file as part of the supplementary materials.

Derivation of the rate law

$$\frac{d[2a]}{dt} = k_2 [CpRu(PPh_3)Cl][BuBr] \quad (1)$$

$$\frac{d[CpRu(PPh_3)Cl]}{dt} = 0$$

From the steady state approximation,

$$\frac{d[CpRu(PPh_3)Cl]}{dt} = k_1[1a] - k_{-1}[CpRu(PPh_3)Cl][PPh_3] - k_2[CpRu(PPh_3)Cl][BuBr] = 0 \quad (2)$$

Solving for $[CpRu(PPh_3)Cl]$:

$$[CpRu(PPh_3)Cl] = \frac{k_1[CpRu(PPh_3)_2Cl]}{k_{-1}[PPh_3] + k_2[BuBr]} \quad (3)$$

Substituting the $[CpRu(PPh_3)Cl]$ into equation (1):

$$\frac{d[2a]}{dt} = \frac{k_1 k_2 [CpRu(PPh_3)_2Cl][BuBr]}{k_{-1}[PPh_3] + k_2[BuBr]} = -\frac{d[1a]}{dt} \quad (4)$$

Where

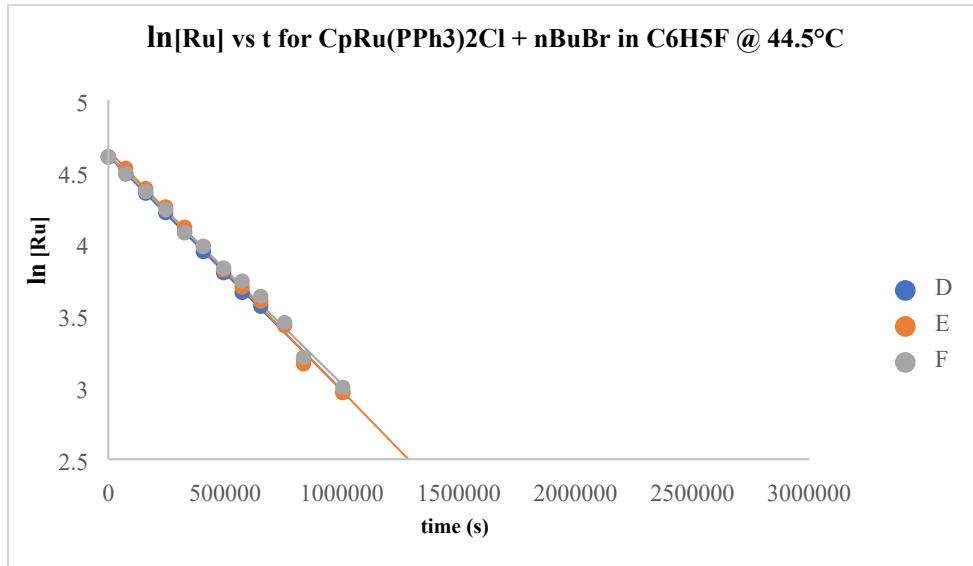
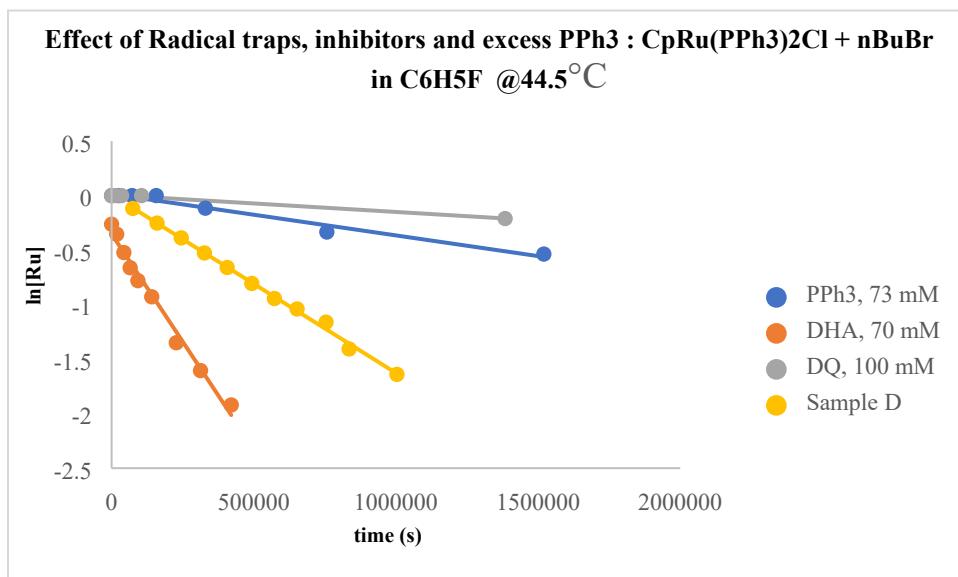
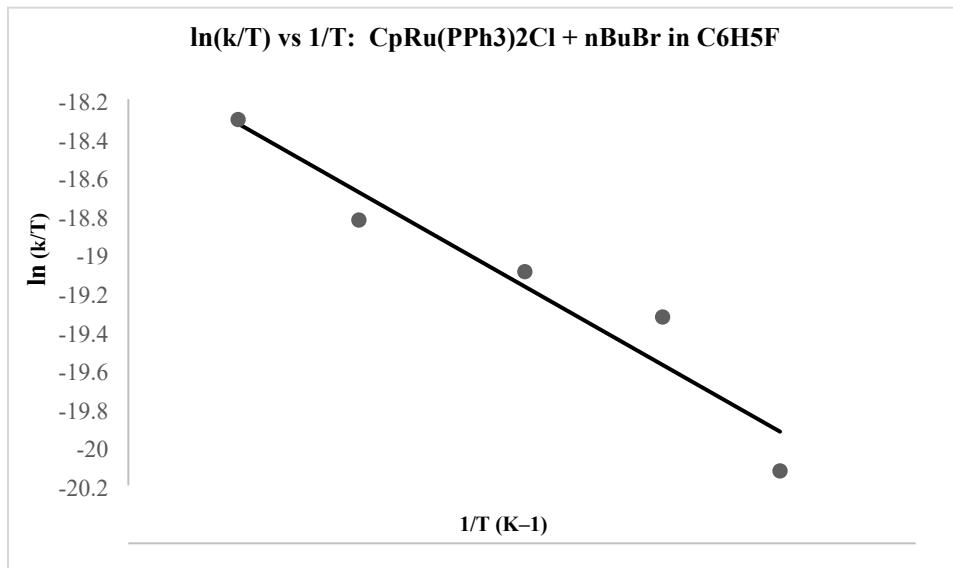
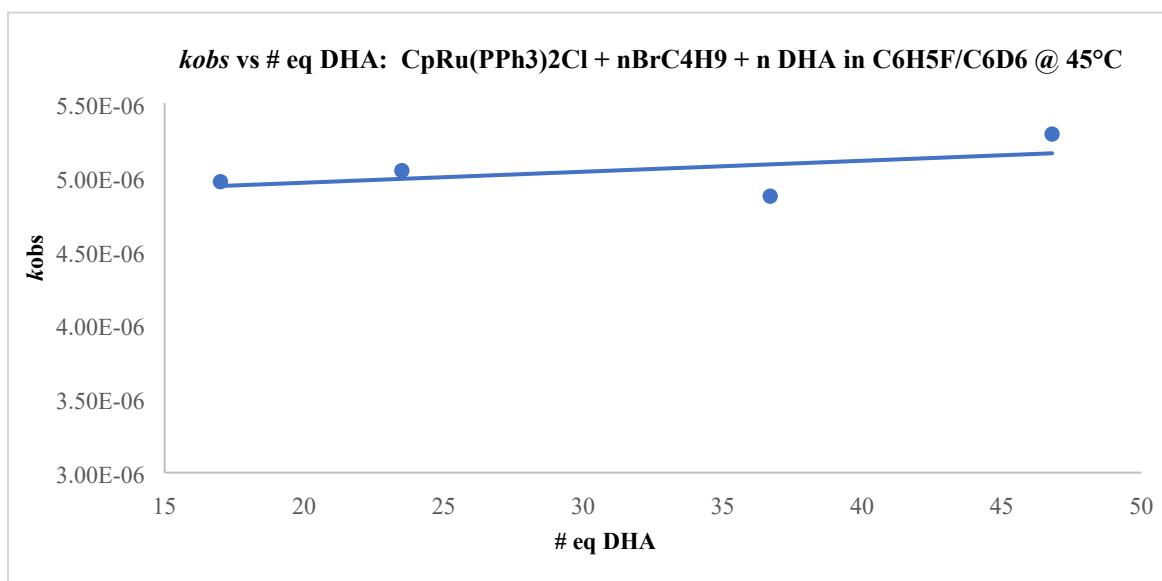

$$k_{obs} = \frac{k_1 k_2 [BuBr]}{k_{-1}[PPh_3] + k_2[BuBr]} \quad (5)$$

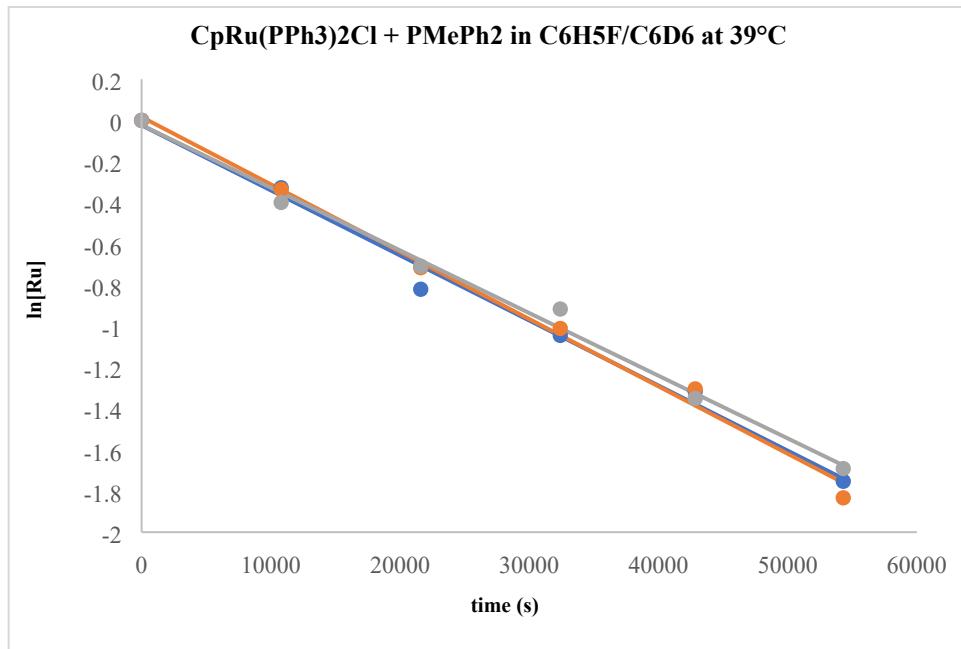
Table S1: Summary of Observed Rate Constants for the Reaction Between CpRu(PPh ₃) ₂ Cl (10.5 mM) and Organic Halides in C ₆ H ₅ F/10% C ₆ D ₆			
Organic halide	[RX] (mM)	T (°C)	<i>k</i> _{obs} x 10 ⁶ s ⁻¹
1-BrC ₄ H ₉	105	50	1.62±0.05
2-Br-2-MeC ₃ H ₆	110	50	0.56±0.02
1-IC ₃ H ₇	72	40	1.0±0.1
CH ₃ I	69	40	7.2±0.6

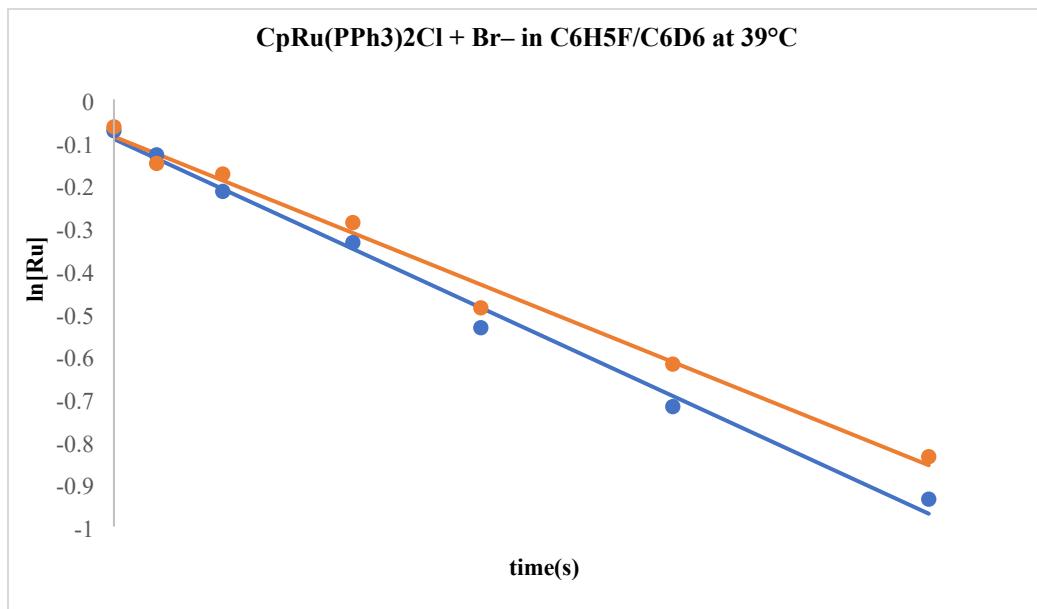

Table S2: Summary of Rate Constants for the Reaction: CpRu(PPh₃)₂Cl (**1a**)+ ⁿBuBr in C₆H₅F/10% C₆D₆

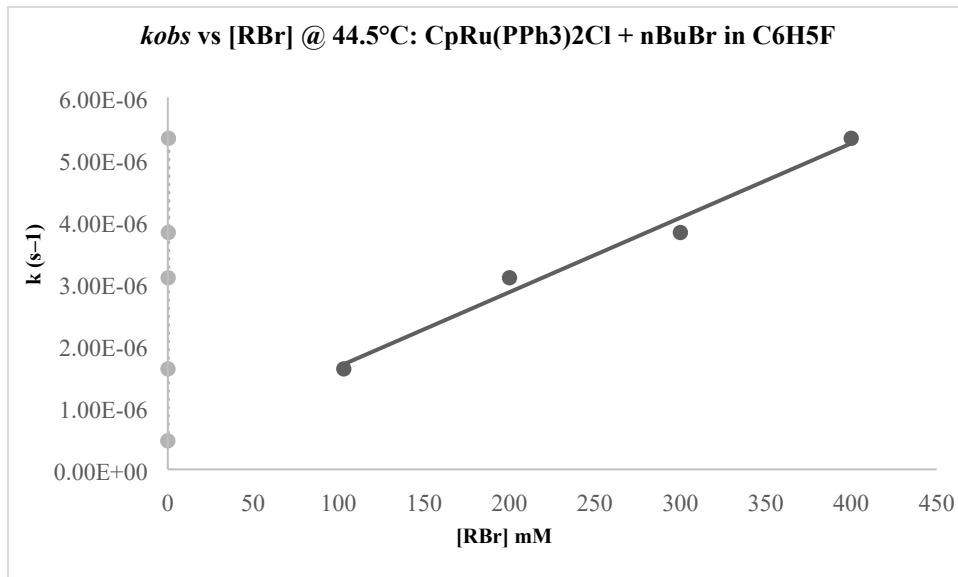
[1a] ^a	[ⁿ BuBr]	[DHA]	[DQ]	[PPh ₃]	T (°C)	<i>k</i> _{obs, 1} ^b	<i>k</i> _{obs, 2}	<i>k</i> _{obs, 3}	<i>k</i> _{ave}
10	103	0	0	0	34.7	0.58	0.53	^b	0.55±0.03
10	103	0	0	0	39.0	1.26	1.30	1.23	1.26±0.04
10	103	0	0	0	44.2	1.60	1.67	1.60	1.62±0.04
10	103	0	0	0	50.7	2.08	2.00	2.40	2.16±0.21
10	103	0	0	0	55.6	3.79	3.58	^b	3.69±0.14
10	200	0	0	0	44.5	3.04	2.73	3.47	3.09±0.37
10	300	0	0	0	44.5	3.62	4.01	^b	3.82±0.28
10	400	0	0	0	44.5	5.22	5.52	5.28	5.34±0.16
10	105	70	0	0	44.0	4.98	3.39	3.95	4.08±0.84
10	100	0	73	0	44.0	0.160	0.130	0.156	0.15±0.02
10.5	102	0	0	73	44.0	1.98	2.98	1.20	0.21±0.09


^a all concentrations in mM. ^b pseudo first order rate constants x 10⁶ s⁻¹ ^b the third sample in these cases leaked leading to decomposition.


Figure S1: Representative plot of $\ln[1\mathbf{a}]$ vs time (s) for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and bromobutane at 44.5°C


Figure S2: Effect of radical traps, initiators and excess PPh₃ on k_{obs} for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and bromobutane at 44.5°C in fluorobenzene/10% benzene-d⁶


Figure S3: Eyring plot $\ln k_{\text{obs}}/T$ vs $1/T$ for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and bromobutane in fluorobenzene/10% benzene-d⁶


Figure S4: Plot of k_{obs} vs [DHA] for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and bromobutane at 44.5°C in fluorobenzene/10% benzene-d⁶. The values for k_{obs} in this plot reflect a single measurement at each concentration.

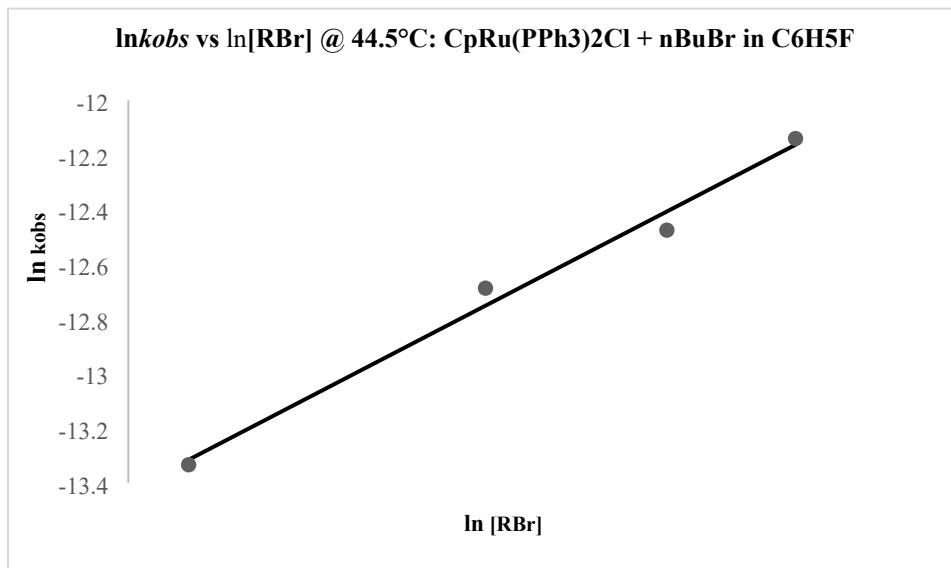

Figure S5: Plot of $\ln[1\mathbf{a}]$ vs time (s) for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and methyldiphenylphosphine at 40°C in fluorobenzene/10% benzene-d⁶

Figure S6: Plot of $\ln[1\mathbf{a}]$ vs time (s) for the reaction between $\text{CpRu}(\text{PPh}_3)_2\text{Cl}$ and bromide ion at 44.5°C in fluorobenzene/10% benzene-d⁶

Figure S7: Plot of k_{obs} vs [ⁿbutylbromide] for the reaction between CpRu(PPh₃)₂Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d⁶

Figure S8: Plot of ln k_{obs} vs ln[ⁿbutylbromide] for the reaction between CpRu(PPh₃)₂Cl and bromobutane at 44.5°C in fluorobenzene/10% benzene-d⁶

Table S3: Calculate Free Energies (ΔG , kJ/mol) for Intermediates in the Reaction: $CpRu(PPh_3)_2Cl + EtBr \rightarrow CpRu(PPh_3)_2Br + EtCl^a$		
Reaction	Gas phase	C_6H_5F solvated ^b
$CpRu(PPh_3)_2Cl + EtBr \rightarrow$ $CpRu(PPh_3)Cl(EtBr) + PPh_3$	102.40	99.02
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Cl(Br) \cdot \cdot Et$	145.74	138.35
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Cl(Br)(Et)$	33.83	28.79
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Br(EtCl)$	0.36	0.24
$CpRu(PPh_3)Br(EtCl) + PPh_3 \rightarrow$ $CpRu(PPh_3)_2Br + EtCl$	-99.28	-95.61
^a M06/def2-SVP ^b Gaussian PCM		

Table S4: Calculated Energies (ΔG kJ/mol, ΔH kJ/mol) for Intermediates in the Reaction: $CpRu(PPh_3)_2Cl + EtBr \rightarrow CpRu(PPh_3)_2Br + EtCl^a$				
	Gas Phase		C_6H_5F solvated ^b	
Reaction	ΔG	ΔH	ΔG	ΔH
$CpRu(PPh_3)_2Cl + EtBr \rightarrow$ $CpRu(PPh_3)Cl(EtBr) + PPh_3$	76.98	99.38	72.06	94.81
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Cl(Br) \cdot \cdot Et$	67.56	126.24	63.65	120.77
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Cl(Br)(Et)$	48.18	39.39	43.32	35.10
$CpRu(PPh_3)Cl(EtBr) \rightarrow$ $CpRu(PPh_3)Br(EtCl)$	-3.96	-0.94	-2.73	0.70
$CpRu(PPh_3)Br(EtCl) + PPh_3 \rightarrow$ $CpRu(PPh_3)_2Br + EtCl$	-78.67	-103.50	-74.09	-100.35
^a M06/def2-TZVP ^b Gaussian PCM				

References

1. Bruce, M. I.; Hameister, C.; Swincer, A. G.; Wallis, R. C. *Inorg. Synth.* **1990**, *28*, 270.
2. a. Bruce, M. I.; Windsor, N. J. *Aust. J. Chem.* **1977**, *30*, 1601-1604; b. Nataro, C.; Chen, J.; Angelici, R. J. *Inorg. Chem.* **1998**, *37*, 1868-1875; c. Hartwig, J. F.; Bhandari, S.; Rablen, P. R. *J. Am. Chem. Soc.* **1994**, *116*, 1839-1844; d. Costello, J. F.; Davies, S. G.; Highcock, R. M. Polywka, M. E.; Poulter, M. W.; Richardson, T.; Roberts, G. G. *J. Chem. Soc. Dalton Trans.* **1997** 105-109.
3. Wilczewski, T.; Bochenska, M.; Biernat, J. F. *J. Organometal. Chem.* **1981**, *215*, 87-96.