Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synergistic effect of side-functionalization and aza-substitution on the charge transport and optical properties of perylene-based organic materials: A DFT study

Suryakanti Debata, Rudranarayan Khatua, Sridhar Sahu*

High Performance Computing lab, Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, India

E-mail: sridharsahu@iitism.ac.in

Section S1. EA and IP calculations

The adiabatic/vertical electron affinities and ionization potentials (AEAs/AIPs and VEAs/VIPs) of the studied compounds can be calculated from the potential energy surfaces (**Figure S1**) as follows.

Figure S1. Schematic representation of potential energy surfaces of neutral and charged species of the organic semiconductors, used for calculating the internal hole/electron reorganization energies ($\lambda_{h/e}$) using four-point method, adiabatic/vertical electron affinities and ionization potentials (AEAs/AIPs and VEAs/VIPs).

Figure S2. Deviation of geometrical parameters of **P1** at different levels of theory from the experimental values (a) bond lengths, and (b) dihedral angles.

Figure S3. (a) optimized geometry of perylene using B3LYP/6-31G(d,p) method showing the selective bond labels, (b) bond-length deviations (in Å unit) at the selective sites of the studied compounds from the parent perylene structure upon side-substitution.

Figure S4. Bond-length changes (in Å unit) in the studied compounds during charge transfer.

Compound	Crystal system	Space group	Packing motif	a	b	С	α	β	Ŷ
					(Å)			(°)	
P1 [S1]	Orthorhombic	Pbca	Brick wall layer	12.51	35.54	16.82	90.0	90.0	90.0
P2 [S1]	Orthorhombic	Pbca	Herringbone	9.80	19.17	38.31	90.0	90.0	90.0
P3	Orthorhombic	Pbca	Herringbone	29.78	7.78	19.89	90.0	90.0	90.0
P4	Monoclinic	Cc	Brick wall layer	16.76	17.11	12.59	90.0	107.1	90.0
P5	Orthorhombic	$Pna2_1$	Herringbone	7.01	8.82	36.10	90.0	90.0	90.0
P6	Monoclinic	$P2_{1}/c$	Brick wall layer	16.17	21.16	9.86	90.0	101.1	90.0
P7	Orthorhombic	P212121	Brick wall layer	35.05	6.95	9.05	90.0	90.0	90.0
P8	Orthorhombic	Pbca	Herringbone	29.61	10.98	18.98	90.0	90.0	90.0
P9	Orthorhombic	Pbca	Cofacial stacking	41.78	16.16	7.39	90.0	90.0	90.0
P10	Orthorhombic	Pbca	Herringbone	25.41	13.22	23.00	90.0	79.16	90.0
P11	Orthorhombic	P212121	Cofacial stacking	4.28	34.81	16.31	90.0	90.0	90.0
P12	Orthorhombic	Pbca	Herringbone	24.54	13.17	22.55	90.0	90.0	90.0
P13	Orthorhombic	Pbca	Herringbone	10.01	7.67	61.70	90.0	90.0	90.0
P14	Orthorhombic	Pbca	Herringbone	17.76	31.22	12.42	90.0	90.0	90.0
P15	Orthorhombic	P212121	Herringbone	13.01	11.74	22.81	90.0	90.0	90.0
P16	Orthorhombic	$P2_{1}2_{1}2_{1}$	Herringbone	22.98	11.68	12.86	90.0	90.0	90.0

 Table S1. Unit-cell parameters of the crystals of perylene derivatives.

Figure S5. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P1.

Figure S6. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P2.

Figure S7. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P3.

Figure S8. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P4.

Figure S9. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P5.

Figure S10. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P6.

Figure S11. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P7.

Figure S12. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P8.

Figure S13. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P9.

Figure S14. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P10.

Figure S15. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P11.

Figure S16. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P12.

Figure S17. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P13.

Figure S18. (a) Molecular crystal packing with illustration of different hopping pathways, and (b) anisotropic hole and electron mobilities of P14.

Figure S19. Benchmarking of TD-DFT method by comparing the absorption spectra of **P2** obtained with different exchange-correlation functionals.

Reference

S1. Y. Hirao, T. Okuda, Y. Hamamoto, T. Kubo, Formation of perylenes by oxidative dimerization of naphthalenes bearing radical sources, ChemPlusChem 2019, 84, 1–10.