A Ni(II) metal-organic framework with helical channels for the capture of iodine via guest exchange induced amorphization

Jie-Fen Huang,[†] Shu-Qi Deng,[‡] Hao-Chen Hu,[§] Song-Liang Cai,^{*} [†] Wei-Guang Zhang,^{*} [†] Jun Fan,[†] Sheng-Run Zheng^{*, †}

[†]School of Chemistry, South China Normal University, Guangzhou, 510006, China.

[‡] Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China

School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China * Corresponding author: Prof. Sheng-Run, Zheng; Prof. Wei-Guang Zhang; Dr. Song-Liang Cai E-mail address: <u>zhengsr@scnu.edu.cn</u>; <u>wgzhang@scnu.edu.cn</u>; songliangcai@m.scnu.edu.cn Tel./Fax.: +86-20-39310187

Supporting Information

Complex	SCNU-Z5
Empirical formula	C ₉₁ H ₉₀ N ₃₁ Ni ₂ O ₄
Formula weight	1799.35
Crystal system	Trigonal
Space group	<i>R</i> 3 :H
a / Å	22.7024(11)
b / Å	22.7024(11)
c / Å	24.4575(13)
α / °	90
β / °	90
γ/°	120
V / Å ³	10916.6(12)
Ζ	3
D / g cm ⁻³	0.821
μ / mm^{-1}	1.670
T / K	193(2)
R^a / wR^b	0.0363 / 0.1003
Total / unique	17166 / 8814
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / F_{o} , {}^{b}wR_{2} = [\Sigma w]$	$w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/2}$, where $w = 1/[\sigma^2(F_o^2) + (aP)_2 + bP]$.

Table S1 Crystallographic data and structure refinement summary for SCNU-Z5

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/|F_{o}|, {}^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)_{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2})/3.$

*The refinement results were obtained from squeeze data.

SCNU-Z5				
Ni(1)-N(1A)#1	2.050(18)	Ni(2)-N(7)#1	2.120(6)	
Ni(1)-N(1A)	2.050(7)	Ni(2)-N(7)#2	2.120(6)	
Ni(1)-N(1A)#2	2.050(17)	Ni(2)-N(7)	2.120(6)	
Ni(1)-N(1B)	2.052(6)	Ni(2)-N(5)#1	2.145(12)	
Ni(1)-N(1B)#2	2.052(12)	Ni(2)-N(5)	2.145(12)	
Ni(1)-N(1B)#1	2.052(16)	Ni(2)-N(5)#2	2.145(12)	
Ni(1)-N(8)#2	2.054(6)	Ni(2)-N(5A)#1	2.229(10)	
Ni(1)-N(8)	2.054(6)	Ni(2)-N(5A)	2.230(10)	
Ni(1)-N(8)#1	2.055(6)	Ni(2)-N(5A)#2	2.230(10)	
N(1A)#1-Ni(1)-N(1A)	81.1(8)	N(7)#1-Ni(2)-N(7)	89.8(2)	
N(1A)#1-Ni(1)-N(1A)#2	81.1(9)	N(7)#2-Ni(2)-N(7)	89.8(2)	
N(1A)-Ni(1)-N(1A)#2	81.1(9)	N(7)#1-Ni(2)-N(5)#1	93.9(5)	
N(1A)#1-Ni(1)-N(1B)#2	85.9(8)	N(7)#2-Ni(2)-N(5)#1	83.0(5)	
N(1A)-Ni(1)-N(1B)#2	93.2(8)	N(7)-Ni(2)-N(5)#1	171.9(5)	
N(1A)#2-Ni(1)-N(1B)#2	12.5(11)	N(7)#1-Ni(2)-N(5)	83.0(5)	
N(1A)#1-Ni(1)-N(1B)#1	12.5(10)	N(7)#2-Ni(2)-N(5)	171.9(5)	
N(1A)-Ni(1)-N(1B)#1	85.9(8)	N(7)-Ni(2)-N(5)	93.9(5)	
N(1A)#2-Ni(1)-N(1B)#1	93.2(9)	N(5)#1-Ni(2)-N(5)	93.7(7)	
N(1B)-Ni(1)-N(1B)#1	97.1(8)	N(7)#1-Ni(2)-N(5)#2	171.9(5)	
N(1B)#2-Ni(1)-N(1B)#1	97.1(7)	N(7)#2-Ni(2)-N(5)#2	93.9(5)	
N(1A)#1-Ni(1)-N(8)#2	173.8(7)	N(7)-Ni(2)-N(5)#2	83.0(5)	
N(1A)-Ni(1)-N(8)#2	93.6(3)	N(5)#1-Ni(2)-N(5)#2	93.7(7)	
N(1A)#2-Ni(1)-N(8)#2	95.0(6)	N(5)-Ni(2)-N(5)#2	93.7(7)	
N(1A)#1-Ni(1)-N(8)	93.6(6)	N(7)#1-Ni(2)-N(5A)#1	87.6(4)	
N(1A)-Ni(1)-N(8)	95.0(3)	N(7)#2-Ni(2)-N(5A)#1	89.2(4)	
N(1A)#2-Ni(1)-N(8)	173.8(7)	N(7)-Ni(2)-N(5A)#1	177.3(4)	
N(1B)-Ni(1)-N(8)	91.3(3)	N(5)#1-Ni(2)-N(5A)#1	8.9(7)	
N(1B)#2-Ni(1)-N(8)	171.6(8)	N(5)-Ni(2)-N(5A)#1	86.7(6)	
N(1B)#1-Ni(1)-N(8)	81.7(7)	N(5)#2-Ni(2)-N(5A)#1	99.7(5)	
N(8)#2-Ni(1)-N(8)	90.0(2)	N(7)#1-Ni(2)-N(5A)	89.2(4)	
N(1A)#1-Ni(1)-N(8)#1	95.0(8)	N(7)#2-Ni(2)-N(5A)	177.3(4)	
N(1A)-Ni(1)-N(8)#1	173.8(3)	N(7)-Ni(2)-N(5A)	87.6(4)	
N(1A)#2-Ni(1)-N(8)#1	93.6(9)	N(5A)#1-Ni(2)-N(5A)	93.3(6)	
N(1B)-Ni(1)-N(8)#1	171.6(3)	N(7)#1-Ni(2)-N(5A)#2	177.3(4)	
N(1B)#2-Ni(1)-N(8)#1	81.7(8)	N(7)#2-Ni(2)-N(5A)#2	87.6(4)	
N(1B)#1-Ni(1)-N(8)#1	91.3(7)	N(7)-Ni(2)-N(5A)#2	89.2(4)	
N(8)#2-Ni(1)-N(8)#1	90.0(2)	N(5)#1-Ni(2)-N(5A)#2	86.7(6)	
N(8)-Ni(1)-N(8)#1	90.0(2)	N(5)-Ni(2)-N(5A)#2	99.7(5)	
N(7)#1-Ni(2)-N(7)#2	89.8(2)	N(5)#2-Ni(2)-N(5A)#2	8.9(7)	

 Table S2 Selected bond lengths [Å] and angles [°] for SCNU-Z5

Symmetry transformations used to generate equivalent atoms: #1 - y + 1, x - y, z; #2 - x + y + 1, -x + 1, z; #3 x - 2/3, y - 1/3, z - 1/3; #4 x + 1/3, y + 2/3, z + 2/3; #5 x - 1/3, y - 2/3, z - 2/3; #6 x + 2/3, y + 1/3, z + 1/3.

Fig. S1 XPS full-survey scan spectrum of as-synthesized SCNU-Z5.

Fig. S2 ¹HNMR of the solution after digestion of SCNU-Z5 with NaOH.

Fig. S3 The TG curves of SCNU-Z5 and SCNU-Z5 that after immersing in MeOH.

Fig. S4 The PXRD of SCNU-Z5 after immersing in water with different time.

Adsorption kinetics study.

The adsorption data were studied using pseudo-first-order and pseudo-second-order equation equations.

The pseudo-first-order equation is shown below:

$$Ln(Q_e-Q_t) = lnQ_e-k_1t$$

where k_1 is the pseudo-first-order rate constant (min⁻¹), Q_e and Q_t are the adsorption capacity at equilibrium and at the time of t, respectively.

The pseudo-second-order equation is shown below:

$$t/Q_t = 1/(k_2Q_e^2) + t/Q_e$$

where k_2 is the pseudo-second-order rate constant (mg/g·min), Q_e and Q_t are the adsorption capacity at equilibrium and at the time of t, respectively.

Adsorption isotherms study.

The Langmuir, Freundlich and Themkin equations were selected to fit the data.

Langmuir model is the most widely used model based on the assumption of a monolayer adsorption on a homogeneous surface. It can be given by:

$$\frac{c_e}{Q_e} = \frac{1}{Q_m b} + \frac{c_e}{Q_m}$$

where $c_e (\text{mg L}^{-1})$ is the equilibrium concentration of MB in solution, $Q_e (\text{mg g}^{-1})$ is the adsorption capacity at equilibrium, $Q_m (\text{mg g}^{-1})$ and b (L mg⁻¹) represent the maximum adsorption capacity of adsorbents and the energy of adsorption, respectively.

Freundlich model is another widely applied isothermal model based on the assumption that adsorption energy decays exponentially with coverage rise. The Freundlich equation is given as:

$$lnqQ_e = lnk_F + \frac{1}{n}lnc_e$$

where $k_F[(\text{mg g}^{-1})(\text{L mg}^{-1})^{1/n}]$ is a constant indicative of the adsorption capacity of the adsorbent and (1/n) of the adsorption intensity.

Tempkin model is a widely used isothermal model based on the assumption that adsorption energy decreases linearly with coverage rise. The Tempkin equation is given as:

$$Q_e = Bln^{(n)}(A) + BlnC_e$$

where B = (RT/b) is related to the heat of adsorption, A is the equilibrium binding constant, T(K) is the absolute temperature and R is the universal gas constant.

Fig. S5 Plot of the pseudo-second order kinetic model for the adsorption of I_2 on SCNU-Z5.

	Pseudo-firs	udo-first order Cal K_1 $g \cdot g^{-1}$ (min ⁻¹) R^2		Pseudo-second order		
$q_{e, Exp} (mg/g)$	$\begin{array}{cc} q_{e,} & _{Cal} \ (mg \cdot g^{-1}) \end{array}$	K_1 (min ⁻¹)	R ²	$\begin{array}{cc} q_{e, & Cal} \ (mg \cdot g^{-1}) \end{array}$	$\begin{array}{l} K_2 \\ (g \cdot mg^{-1} \cdot min^{-1}) \end{array}$	R ²
	347.9	0.302	0.9960	62.11	-1.03×10 ⁻⁹	0.881

Table S4. A summary of some representative MOFs for the iodine capture in various media and their uptake capacities.

MOFs	Sorption medium	Maximum $q_m(mg \cdot g)$	Ref
UiO-66-PYDC	cyclohexane	1250	S1
UiO-66	cyclohexane	401	S1
JLNU-4	cyclohexane	680	S2
Th-TATAB	cyclohexane	750	S3
Th-SINAP-7	cyclohexane	107	S4
Th-SINAP-8	cyclohexane	258	S4
Th-TTHA	cyclohexane	562	S5
AgNPs@UiO-66	cyclohexane	1260	S6
SCNU-Z4	cyclohexane	237	S7
SCNU-Z5	cyclohexane	442	This work
Mn-MOF	water	1.1	S8
SCNU-Z4	water	332	S7
SCNU-Z5	water	351	This work
Zr ₆ (µ ₃ -O) ₄ (µ ₃ -OH) ₄ (ITTC) ₄	I ₂ vapor	2.92	S9
UPC-158	I ₂ vapor	1.77	S9
Continued			

Th-SINAP-7	I ₂ vapor	0.352	S4
Th-SINAP-8	I ₂ vapor	0.473	S4
MOF-808	I ₂ vapor	2.18	S10
HKUST-1	I ₂ vapor	1.75	S11
NU-1000	I ₂ vapor	1.45	S10
ZIF-8	I ₂ vapor	1.25	S12
MFM-300(In)	I ₂ vapor	1.16	S13
UiO-67	I ₂ vapor	0.53	S10
Aloc-28-NC	I ₂ vapor	0.621	S14
JNU-200	I ₂ vapor	1.08	S15
SCNU-Z5	I ₂ vapor	1.68	This work

Fig. S6 Plots of the fitting of the I_2 adsorption on SCNU-Z5 experimental data with (a) Freundlich and (b) Themkin isotherm models.

Models	Parameters			
	$q_m (mg \cdot g^{-1})$	438.6		
Langmuir	b (L·mg ⁻¹)	0.067		
	\mathbb{R}^2	0.9933		
Freundlich	n	4.54		
	$k_{\rm F} ({\rm mg} \cdot {\rm g}^{-1} ({\rm L} \cdot {\rm mg}^{-1})^{1/n})$	127.5		
	\mathbb{R}^2	0.8513		
	A ($L \cdot g^{-1}$)	5.36		
Tempkin	В	57.18		
	R ²	0.9508		

Table S5. Parameters of the adsorption of I₂ on SCNU-Z5.

Fig. S7 The color change of the solutions and solids before and after iodine capture in water.

Details for I₂ titration

Step 1. Preparation of 0.01000 M Na₂S₂O₃ standard solution

Pipette 10.00 ml of 0.1000 M $Na_2S_2O_3$ standard solution, put it into a 100 ml volumetric flask, dilute it with water, and fix the volume after cooling.

Step 2. Determination of iodine in aqueous solution by titration

Take 10 ml of iodine aqueous solution. Then, the concentrations were determined by titrating against $Na_2S_2O_3$ standard solution (0.01000 M). The experiments were performed three times and the average value is used for following calculation.

Step 3. Calculation of amount of iodine removed from aqueous iodine solution

The data is below:

Dandings	Volume of	of I ₂ Volume of Na ₂ S ₂ O ₃		M _{I2} (mg/L)		
Keaunigs	(mL)		(mL)			
Before	20.00		6.97			447.6
After immersing for	10.00		1.50			06.28
36 h	10.00		1.50			70.30

The mass of I2 adsorbed by SCNU-Z5 is

m $_{I_2}$ = (447.6-96.38) ×10×10⁻³= 3.512 mg

The mass of I2 adsorbed by per gram of SCNU-Z5 is

m = 3.512/10*1000 = 351.2 mg/g

Fig. S8 PXRD data of I_2 loaded SCNU-Z5 sample that after iodine adsorption in water for 12 h.

Fig. S9 The pictures of (a) non-ground and (b) ground samples before and after iodine adsorption in water and their corresponding SEM image before iodine adsopion.

Fig. S10 SEM-EDS mapping and EDS spectra profiles of I₂@SCNU-Z5-water.

Fig. S11 SEM-EDS mapping and EDS spectra profiles of I₂@SCNU-Z5-cyclohexane.

Fig. S12 SEM-EDS mapping and EDS spectra profiles of I₂@SCNU-Z5-vapor.

Fig. S13 The UV-Vis spectra of the water and methanol solution after immersing with $I_2@SCNU-Z5$ for 7 days. (Inserted are the figures for the color change of the solutions and the solids)

Fig. S14 The TG curve of I_2 @SCNU-Z5.

Reference

(1) Wang, Z.; Huang, Y.; Yang, J.; Li, Y.; Zhuang, Q.; Gu, J. Dalton Trans. 2017, 46, 7412–7420.

(2) Yao, C.; Wang, W.; Zhang, S. R.; Li, H. Y.; Xu, Y. H.; Su, Z. M.; Che, G. B. *RSC*. *Adv.* **2018**, *8*. 36400–36406.

(3) Zhang, N.; Sun, L.X.; Xing, Y. H.; Bai, F. Y. Cryst. Growth Des. 2019, 19, 5686–5695.

(4) Li, Z. J.; Yue, Z.; Wu, X.; Ren, Y.; Wang, S.; Li, Y.; Zhang, Z. H.; Guo, X.; Lin, J.; Wang, J. Q. *Inorg. Chem.* **2020**, *59*, 4435–4442.

(5) Zhang, N.; Sun, L. X.; Bai, F. Y.; Xing, Y. H. Inorg. Chem. 2020, 59, 3964–3973.

(6) Feng, Y.; Yang, P.; Li, Y.; Gu J. J. Chem. Eng. Data 2020, 65, 1986–1992.

- (7) S7 ICF Wang, G. Q.; Huang, J. F.; Huang, X. F.; Deng, S. Q.; Zheng, S. R.; Cai, S. L.; Fan, J.; Zhang, W. G. *Inorg. Chem. Front.* **2021**, *8*,1083–1092.
- (8) Gogia, A.; Das, P.; Mandal, S. K. ACS Appl. Mater. Interfaces 2020, 12, 46107–46118.
- (9) Guo, B.; Li, F.; Wang, C.; Zhang, L.; Sun, D. J. Mater. Chem. A. 2019, 7, 13173– 13179.
- (10) Chen, P.; He, X. H.; Pang, M. B.; Dong, X. T.; Zhao, S.; Zhang, W. ACS Appl. Mater. Interfaces **2020**, *12*, 20429–20439.

(11) Sava, D. F.; Chapman, K. W.; Rodriguez, M. A.; J. Greathouse, A.; Crozier, P. S.; Zhao, H.; Chupas P. J.; Nenoff, T. M. *Chem. Mater.* **2013**, *25*, 2591–2596.

(12) Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M. *J. Am. Chem. Soc.* **2011**, *133*, 12398–12401.

(13) Zhang, X.; da Silva, I.; Godfrey, H. G. W.; Callear, S. K.; Sapchenko, S. A.; Cheng,
Y.; Vitorica-Yrezabal, I.; Frogley, M. D.; Cinque, G.; Tang, C. C.; Giacobbe, C.;
Dejoie, C.; Rudic, S.; Ramirez-Cuesta, A. J.; Denecke, M. A.; Yang, S.; Schroder, M. *J. Am. Chem. Soc.* 2017, *139*,16289–16296.

(14) Yao, S.; Fang, W. H.; Sun, Y.; S. Wang, T.; Zhang, J. J. Am. Chem. Soc. 2021, DOI: 10.1021/jacs.0c11778.

(15) Wu, K.; Huang, Y.-L.; Zheng, J.; Luo, D.; Xie, M.; Li, Y. Y.; Lu, W.; Li, D. *Mater. Chem. Front.* **2021**, *5*, 4300–4309.