Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

- 1 Electronic Supplementary Material (ESI) for New Journal of Chemistry.
- 2 This journal is © The Royal Society of Chemistry and the Centre National de la
- 3 Recherche Scientifique 2021
- 4
- 5 Supplementary Information
- 6
- 7 Evaluation of the multifunctional activity of silver bionanocomposites in environment

8 remediation and inhibition of growth of multidrug-resistant pathogens

- 9
- 10 Rebika Baruah^{a,b}, Archana Yadav^c, Archana Moni Das^{a,b*}
- 11 aNatural product Chemistry Group, Chemical Science and Technology Division,
- 12 CSIR-North East Institute of Science and Technology, Jorhat, Assam, India-785006
- 13 bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- 14 Biotechnology Group, Biological Science and Technology Division,
- 15 CSIR- North East Institute of Science and Technology, Jorhat, Assam, India-785006
- 16 *Corresponding author. Tel.: +919435489369.
- 17 E-mail address: archanamoni@neist.res.in
- 18
- 19

20

The Barmers of Science

Elements	Weight%	Atomic%
СК	27.35	34.17

ОК	36.90	54.36
Ag L	35.75	11.47
Totals	100	

- 22 Fig. S1 EDX spectra and elemental weight% and atomic% of cellulose-supported Ag
- 23 bionanocomposites.

32 Fig. S3 Nitrogen adsorption-desorption BET isotherms for the cellulose-supported Ag 33 binanocomposites.

35 36

Fig. S4 Reusability of the AGC NCs in the degradation of Brilliant blue FCF.

Fig. S5 XRD pattern of AGC NCs after five catalytic cycles.

Fig. S6 Heterogeneity test of the AGC NCs in the degradation of 2-nitroaniline.

Fig. S8 Growth of inhibition of S. aureus at different concentrations of AGC NCs.

- 52 Fig. S9 ROS generation [a] and percentage of DNA [b] in the Klebsiella pneumoniae cell in
- 53 the presence of AGC NCs.
- 54 Table S1 Comparison of photocatalytic properties of AGC NCs with reported catalyst in
- 55 literature

SI No.	Catalyst	Dye	Results	References
1	Alpinia nigra	Orange G	Degradation up	1
	fruits mediated		to 79.9% in 90	
	Ag NPs		min	
2	AGC NCs	Orange G	Degradation up	Our Study
			to 85% in 60 min	
3	GO/CNTs/Ag	Phenol Red	Degradation up	2
	nanohybrids		to 81.4% in 120	
			min under UV	
			irradiation	
4	AGC NCs	Phenol Red	Degradation up	Our Study
			to 84.4% in 60	
			min under solar	
			irradiation	
5		Brilliant Blue	Degradation up	3
		FCF	to 60% in 100	
			min in presence	
			of NaBH ₄	
6	AGC NCs	Brilliant Blue	Degradation up	Our study

FCF	to 90% in 60 min
	without use of
	any reducing
	agents

57 Table S2 MIC of AGC NCs

Bacterial strains	MIC(µg/ml)
S. aureus	35
E. coli	15
B. subtilis	30
K. pneumonia	15
C. albicans	15

58

59 References

60

- D. Baruah, R. N. S. Yadav, A. Yadav, and A. M. Das, *J. Photochem. Photobiol. B Biol.*,
 2019, **201**, 111649.
- A. Singh, S. Chahal, H. Dahiya, A. Goswami, and S. Nain, *Mater. Express*, 2021, 11,
 936-946(11).

A. S. Al-Shehri, Z. Zaheer, A. M. Alsudairi, and S. A. Kosa, ACS Omega 2021, 6, 27510–27526.

- 68
- 69
- 70