Supporting Information

Supramolecular Complexation with Kinetic Stabilization:

Cucurbit[6]uril Encapsulated Doxorubicin-Based Prodrugs for pHResponsive Controlled Release
Weipeng Mao, Shuyi Wang, Dake Mao, Yamin Liu, Libai Li, Da Ma*
School of Pharmaceutical and Materials Engineering \& Institute for Advanced Studies, Taizhou University, Jiaojiang, Zhejiang 318000, China.
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
Email:dama@fudan.edu.cn

Table of Contents

Synthetic procedures S2
Measurement of K_{a} and dissociation kinetics in buffered solution S17
Complex stability study in blood serum. S31
Cell study S35
References S36

Synthesis Procedures

Compound 4a. Cyclopentanecarboxaldehyde ($1.96 \mathrm{~g}, 20 \mathrm{mmol}$) and Glycine methyl ester hydrochloride ($2.51 \mathrm{~g}, 20 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(40 \mathrm{~mL})$. Trimethylamine (5.53 mL) was added into the solution. The solution was stirred at room temperature for $8 \mathrm{~h} . \mathrm{NaBH}_{4}(1.56 \mathrm{~g}, 40 \mathrm{mmol})$ was slowly added into solution. The suspension was stirred at room temperature for 3 h . The reaction was quenched by water. The product was extracted with ethyl acetate, and the solvent was removed by rotary evaporation. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right)$ to give compound $\mathbf{4 a}(700 \mathrm{mg}, 20 \%)$ as colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 3.73 ($\mathrm{s}, 3 \mathrm{H}$), 3.42 ($\mathrm{s}, 2 \mathrm{H}$), 2.53 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01 (m, 1 H), 1.82 - 1.74 (m, 2 H), $1.64-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,55.4$, 51.6, 51.0, 40.0, 30.7, 25.2. HR-MS: m/z $172.1331\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for 172.1338).

Compound 1a. Compound $\mathbf{4 a}(511 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(300 \mathrm{mg}, 6 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$. The solution was heated at reflux for 12 h . The solvent was removed by rotary evaporation, and the residue was recrystallized by ethanol to yield compound $\mathbf{1 a}(300 \mathrm{mg}, 53 \%)$ as colorless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=8.83$ (s, 1 H), 4.19 (s, 2 H), 3.04 (s, 2 H), 2.43 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.95 $-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 170.9, 55.2, 51.6, 39.9, 30.7, 25.3. HR-MS: m/z 172.1446 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd for 172.1450).

Compound 4b. Cyclopentanecarboxaldehyde ($980 \mathrm{mg}, 10 \mathrm{mmol}$) and β-alanine ethyl ester hydrochloride ($1536 \mathrm{mg}, 10 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(40 \mathrm{~mL})$. Trimethylamine ($3.03 \mathrm{~g}, 30 \mathrm{mmol}$) was added into the solution. The solution was stirred at room temperature for $8 \mathrm{~h} . \mathrm{NaBH}_{4}(780 \mathrm{mg}, 20 \mathrm{mmol})$ was slowly added. The suspension was stirred at room temperature for 3 h . The reaction was quenched by water. The product was extracted with ethyl acetate, and solvent was removed by rotary evaporation. The residue was purified by column chromatography (ethyl acetate/petroleum ether) to give compound $\mathbf{4 b}(900 \mathrm{mg}, 20 \%)$ as colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$

- $2.50(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.26$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.19-1.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.8,60.3$, 55.5, 45.3, 19.9, 34.7, 30.8, 25.2, 14.2. HR-MS: m/z $200.1645\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for 200.1651).

1b
Compound 1b. Compound 4b ($700 \mathrm{mg}, 3.6 \mathrm{mmol}$) and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(360 \mathrm{mg}, 7.2$ $\mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL})$. The solution was heated at reflux for 12 h . Solvent was removed by rotary evaporation, and the residue was purified by column chromatography (ethyl acetate/petroleum ether) to give compound $\mathbf{1 b}$ ($300 \mathrm{mg}, 53 \%$) as colorless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=9.01$ ($\mathrm{s}, 1 \mathrm{H}$), 4.14 (s, 2 H), 2.68 $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1$ H), $1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=171.3,55.2,46.3,39.9,34.4,30.8,25.3$. HR-MS: m/z 186.1603 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd for 186.1606).

2a
Compound 2a. Compound 1a ($34.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and doxorubicin hydrochloride (40 $\mathrm{mg}, 69 \mu \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(16 \mathrm{~mL})$. Trifluoroacetic acid ($80 \mu \mathrm{~L}$) was added into the solution and stirred at room temperature for 12 h . Solvent was removed by rotary evaporation. EtOAc (4 mL) was added to the mixture and sonicated for 15 min to afford a red precipitate. The red precipitate was collected by centrifugation and washed by $\mathrm{EtOAc}(6 \mathrm{~mL} \times 2)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} \times 2)$, and dried under high vacuum to give compound 2a ($35 \mathrm{mg}, 69 \%$) as a red solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=$ $13.319(\mathrm{~s}, 1 \mathrm{H}), 11.002(\mathrm{~s}, 1 \mathrm{H}), 7.932-7.886(\mathrm{~m}, 5 \mathrm{H}), 7.690(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.840(\mathrm{~s}$, $1 \mathrm{H}), 5.626(\mathrm{~s}, 1 \mathrm{H}), 5.496(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.304(\mathrm{~s}, 1 \mathrm{H}), 4.895(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.452(s, 2 H), 4.039 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.993 (s, 3 H), $3.831(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.626$ $-3.575(\mathrm{~m}, 2 \mathrm{H}), 3.446(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.910-2.686(\mathrm{~m}, 4 \mathrm{H}), 2.203-1.863(\mathrm{~m}$, $4 \mathrm{H}), 1.746-1.451(\mathrm{~m}, 8 \mathrm{H}), 1.234-0.988(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta=187.1,187.0,167.2$, $161.3,156.8,156.4,154.4,137.0,136.7,136.0,135.2,137.0,136.7,136.0,135.2,120.5$, $120.3,119.5,111.2,111.1,99.4,72.8,72.2,66.8,66.4,60.18,57.1,56.1,52.4,47.5$, $47.0,36.4,30.5,30.3,25.0,25.0,17.3,14.5$. HR-MS: m/z 697.3098 ([M+H] ${ }^{+}$, calcd for 697.3085).

2b
Compound 2b. Compound 1b ($37.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and doxorubicin hydrochloride (40 $\mathrm{mg}, 69 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(16 \mathrm{~mL})$. Trifluoroacetic acid $(80 \mu \mathrm{~L})$ was added to the solution and stirred at room temperature for 12 h . Then, the solvent was removed by rotary evaporation. EtOAc (4 mL) was added and sonicated for 15 min to afford a red precipitate. The precipitate was collected by centrifugation and washed by EtOAc ($6 \mathrm{~mL} \times 2$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} \times 2$), and dried under high vacuum to give compound 2b ($40 \mathrm{mg}, 77 \%$) as a red solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=$ 14.084(s, 1 H), 13.317(s, 1 H), 10.658(s, 1 H), 7.931-7.869(m, 5 H), 7.868-7.664(m, 1 H), $5.888(\mathrm{~s}, 1 \mathrm{H}), 5.484(\mathrm{~s}, 1 \mathrm{H}), 5.380(\mathrm{~s}, 1 \mathrm{H}), 5.320(\mathrm{~s}, 1 \mathrm{H}), 4.985(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.464(\mathrm{~s}, 2 \mathrm{H}), 3.990(\mathrm{~s}, 3 \mathrm{H}), 3.576(\mathrm{~s}, 1 \mathrm{H}), 3.226(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.114-3.104(\mathrm{~m}$, $2 \mathrm{H}), 2.930-2.829(\mathrm{~m}, 4 \mathrm{H}), 2.716$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.399-2.349(\mathrm{~m}, 1 \mathrm{H}), 2.269-$ $2.225(\mathrm{~m}, 1 \mathrm{H}), 2.154-2.077(\mathrm{~m}, 1 \mathrm{H}), 1.894(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.592-1.506(\mathrm{~m}, 2$ H), $1.592-1.506(\mathrm{~m}, 4 \mathrm{H}), 1.233-1.170(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta=187.1$, 187.0, 171.7, 161.3, 156.7, 155.2, 154.7, 136.7, 136.2, 136.0, 135.3, 130.1, 120.6, 120.2, 119.5, 111.2, $99.6,72.5,71.9,66.8,66.5,66.4,57.1,56.6,52.0,47.0,42.9,36.8,33.8,30.4,28.5$, 27.0, 25.0, 17.2. HR-MS: m/z 711.3223 ([M+H] ${ }^{+}$, calcd for 711.3141)

Figure S1. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) for compound $\mathbf{4 a}$

Figure S2. ${ }^{13} \mathrm{C}$ NMR recorded $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ for compound 4a

Figure S3. ${ }^{1} \mathrm{H}$ NMR recorded (400 MHz , DMSO- $d_{6}, 25^{\circ} \mathrm{C}$) for compound 1a

Figure S5. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) for compound $\mathbf{4 b}$.
ц1ๆー
ทะ＇9z－
$62 \cdot 08$ —
72 ＂た一
66 ． 68 －
92 ＇9®－
$09 . \mathrm{g}$－
08 ${ }^{\circ} 09$－
$\left.\begin{array}{l}{ }^{\square 9} 92 \\ 96^{9} 9 L \\ 82^{\circ} 2 L\end{array}\right\}$

Figure S6．${ }^{13} \mathrm{C}$ NMR recorded $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ for compound $\mathbf{4 b}$ ．

Figure S7. ${ }^{1} \mathrm{H}$ NMR recorded (400 MHz , DMSO- $d_{6}, 25^{\circ} \mathrm{C}$) for compound $\mathbf{1 b}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR recorded $\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 25^{\circ} \mathrm{C}\right)$ for compound $\mathbf{1 b}$.

$2 \infty \infty$
ふis

00 'II—

2\& ' $£$ [-

${ }^{-1}$ 0 3
$-20^{\circ} \mathrm{Z}$
$-60^{\circ} \mathrm{T}$
-69°

- +
-

aula

 $+$

7

Figure S9. ${ }^{1} \mathrm{H}$ NMR recorded $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 25^{\circ} \mathrm{C}\right)$ for compound 2a.

Figure S10. ${ }^{13} \mathrm{C}$ NMR recorded $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d 6,25^{\circ} \mathrm{C}\right)$ for compound $\mathbf{2 a}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR recorded (400 MHz , DMSO- $d_{6}, 25^{\circ} \mathrm{C}$) for compound $\mathbf{2 b}$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR recorded (100 MHz , DMSO- $d 6,25^{\circ} \mathrm{C}$) for compound $\mathbf{2 b}$.

Measurement of $\boldsymbol{K}_{\mathrm{a}}$ and dissociation kinetics in buffered

solution

Determination of $\boldsymbol{K}_{\mathbf{a}}$ value. The value of K_{a} was determined according to literature method. ${ }^{[1,2]}$ Based on the slow exchange of free and bound guests on the NMR timescale, the $K_{\text {a }}$ was measured by comparing ${ }^{1} \mathrm{H}$ NMR integral of free and bound guests. The following equation was used to calculate the value of $K a$ as an average of three experiments with different concentrations.
$K_{\mathrm{a}}=[$ bound guest $] /([$ host $] \times[$ free guest $])$

Figure S13. Representative ${ }^{1} \mathrm{H}$ NMR spectrum recorded for $\mathrm{CB}[6] \cdot \mathbf{1 a}$ in $\mathrm{NaD}_{2} \mathrm{PO}_{4}$ $(\mathrm{pD}=7.4)$ to determine the K_{a} value $\left(K_{\mathrm{a}}=(7.5 \pm 1.4) \times 10^{3} \mathrm{M}^{-1}\right)$. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed and free guest.

Figure S14. Representative ${ }^{1} \mathrm{H}$ NMR spectrum recorded for $\mathrm{CB}[6] \cdot \mathbf{1 b}$ in $\mathrm{NaD}_{2} \mathrm{PO}_{4}$ $(\mathrm{pD}=7.4)$ to determine the K_{a} value $\left(K_{\mathrm{a}}=(1.4 \pm 0.1) \times 10^{4} \mathrm{M}^{-1}\right)$. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed and free guest.

Figure S15. Representative ${ }^{1} \mathrm{H}$ NMR spectrum recorded for $\mathrm{CB}[6] \cdot \mathbf{2 a}$ in $\mathrm{NaD}_{2} \mathrm{PO}_{4}$ $(\mathrm{pD}=7.4)$ to determine the K_{a} value $\left(K_{\mathrm{a}}=(7.9 \pm 0.5) \times 10^{3} \mathrm{M}^{-1}\right)$. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest.

Figure S16. Representative ${ }^{1} \mathrm{H}$ NMR spectrum recorded for $\mathrm{CB}[6] \cdot \mathbf{2 b}$ in $\mathrm{NaD}_{2} \mathrm{PO}_{4}$ $(\mathrm{pD}=7.4)$ to determine the K_{a} value $\left(K_{\mathrm{a}}=(1.3 \pm 0.3) \times 10^{4} \mathrm{M}^{-1}\right)$. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest.

Dissociation kinetics.

Figure S17. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{NaD}_{2} \mathrm{PO}_{4}, \mathrm{pD} 7.4,37^{\circ} \mathrm{C}$) for guest $\mathbf{1 a}$ $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $3(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest ($k_{\text {out }}=5.67 \times 10^{-2} \mathrm{~h}^{-1}$).

Figure S18. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD} / \mathrm{CD}_{3} \mathrm{COONa}, \mathrm{pD} 5.5,37{ }^{\circ} \mathrm{C}$) for guest 1a $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $\mathbf{3}(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5tricarboxylic acid) to calculate the concentration of complexed guest ($k_{\text {out }}=4.89 \times$ $10^{-2} \mathrm{~h}^{-1}$).

Figure S19. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD} / \mathrm{CD}_{3} \mathrm{COONa}, \mathrm{pD} 4.0,37^{\circ} \mathrm{C}$) for guest 1a (2 mM), CB[6] (3 mM) and guest $\mathbf{3}(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=5.30 \times$ $10^{-2} \mathrm{~h}^{-1}$)

Figure S20. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{NaD}_{2} \mathrm{PO}_{4}, \mathrm{pD} 7.4,37{ }^{\circ} \mathrm{C}$) for guest 2a $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $3(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=5.13 \times 10^{-2} \mathrm{~h}^{-1}$)

Figure S21. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{NaD}_{2} \mathrm{PO}_{4}, \mathrm{pD} 7.4,37{ }^{\circ} \mathrm{C}$) for guest $\mathbf{1 b}$ $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $3(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=2.09 \times 10^{-2} \mathrm{~h}^{-1}$)

Figure S22. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD} / \mathrm{CD}_{3} \mathrm{COONa}, \mathrm{pD} 5.5,37^{\circ} \mathrm{C}$) for guest 1b $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $\mathbf{3}(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=1.52 \times$ $10^{-2} \mathrm{~h}^{-1}$)

Figure S23. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD} / \mathrm{CD}_{3} \mathrm{COONa}, \mathrm{pD} 4.0,37^{\circ} \mathrm{C}$) for guest 1b $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $\mathbf{3}(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=6.81 \times$ $10^{-3} \mathrm{~h}^{-1}$)

Figure S24. ${ }^{1} \mathrm{H}$ NMR recorded ($400 \mathrm{MHz}, \mathrm{NaD}_{2} \mathrm{PO}_{4}, \mathrm{pD} 7.4,37{ }^{\circ} \mathrm{C}$) for guest 2b $(2 \mathrm{mM}), \mathrm{CB}[6](3 \mathrm{mM})$ and guest $3(20 \mathrm{mM})$ at different time. The integral of proton a was compared to internal reference (benzene-1,3,5-tricarboxylic acid) to calculate the concentration of complexed guest. ($k_{\text {out }}=2.18 \times 10^{-2} \mathrm{~h}^{-1}$)

Figure S25. Time-dependent guest displacement assay of complexes CB[6]•1a and $\mathrm{CB}[6] \cdot \mathbf{2 a}$ at different pH .

Figure S26. Linear fitting of lnC vs t to calculate dissociation rate constant $k_{\text {out }}$.

Complex stability study in blood serum.

Figure S27. Time-dependent concentration of complexed guest 2a (CB[6]+2a, red circle) or guest 2a (guest 2a only, black square) when incubated in blood serum (FBS) at $37^{\circ} \mathrm{C}$; data are displayed as mean $\pm \mathrm{SD}(n=3)$. $[\mathrm{CB}[6]]=60 \mu \mathrm{M},[2 \mathrm{a}]=$ $40 \mu \mathrm{M}$.

Complexed 2a

Figure S28. Representative time-dependent RP-HPLC traces of CB[6]-2a when incubated in blood serum (FBS) at $37^{\circ} \mathrm{C} .[\mathrm{CB}[6]]=60 \mu \mathrm{M},[2 \mathbf{2 a}]=40 \mu \mathrm{M}$.

Figure S29. Representative time-dependent RP-HPLC traces of 2a when it was incubated alone in blood serum (FBS) at $37^{\circ} \mathrm{C}$. [2a] $=40 \mu \mathrm{M}$.

Figure S30. Representative time-dependent RP-HPLC traces of $\mathbf{2 b}$ when it was incubated alone in blood serum (FBS) at $37^{\circ} \mathrm{C}$. [2b] $=40 \mu \mathrm{M}$.

Figure S31. Representative time-dependent RP-HPLC traces of doxorubicin hydrochloride (DOX) when it was incubated alone in blood serum (FBS) at $37^{\circ} \mathrm{C}$. $[$ DOX $]=40 \mu \mathrm{M}$.

Cell study

Minimum essential medium eagle (MEM), Hank's balanced salt solution, L - Glutamine solution and penicillin-streptomycin was purchased from Sigma. Trypsin was purchased from Gibco. Fetal bovine serum was purchased from Zhejiang Tianhang Biotechnology co., Ltd.

Figure S32. Time-dependent cell uptake assay of complexes $\mathrm{CB}[6] \cdot \mathbf{2 a}$ and $\mathrm{CB}[6] \cdot \mathbf{2 b}$. HeLa cell medium $\mathrm{pH}=7.4$. $[\mathrm{DOX}]=[\mathbf{2 a}]=[\mathbf{2 b}]=10 \mu \mathrm{M},[\mathrm{CB}[6]]=$ $15 \mu \mathrm{M}$. Stock solution concentration in PBS: $[\mathbf{2 a}]=[\mathbf{2 b}]=2 \mathrm{mM},[\mathrm{CB}[6]]=3 \mathrm{mM}$. Incubation time: 2 h (blue) and 4 h (red). Fluorescent intensity is displayed as mean $\pm \operatorname{SD}(n=9)$.

References

[1] S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959-15967.
[2] W. L. Mock, N. Y. Shih, J. Org. Chem. 1986, 51, 4440-4446.

