Structural dependence of electrosynthesized cobalt phosphide/black phosphorus precatalyst for oxygen evolution in alkaline media

He Xiao,^a Xiaoling Du,^a Man Zhao,^{*a} Ya Li,^a Tianjun Hu,^a Haishun Wu,^a Jianfeng Jia^{*a} and Nianjun Yang^{* b}

^a Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

^b Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany

*Corresponding author

E-mail: nianjun.yang@uni-siegen.de (N. Yang) ; zm03030225@sxnu.edu.cn (M.

Zhao); jiajf@dns.sxnu.edu.cn (J.F. Jia);

Experimental

Specific activity is a valid descriptor for the density of active sites on the surface of a catalyst, which is calculated by normalizing the original current to the ECSA. ECSA= C_{dl}/C_s C_s is the specific capacitance (0.040 mF/cm²).

The TOF (s⁻¹) of the best catalyst (CoP/BP-30) is calculated using the following equation:

 $TOF = j^* A/(4F^* n)$

where j is the measured current density at an overpotential of 300 mV, A is the surface area of the CoP/BP-30 electrode, F is the Faraday constant (96485 C mol⁻¹), and n is the moles of the CoP/BP-30 active materials on the electrode.

Fig. S1 Normalized XRD spectra based on the (040) peak of BP for CoP/BP-30, CoP/BP-20 and CoP/BP-10.

Table S1 The content of Co with different oxidation states calculated based on theICP-OES results and XPS results.

Voltage	СоР	CoO	Co ₂ O ₃ (Со	СоР	CoO(Ca	Co_2O_3	CoP +
(∨)	(XPS)	(XPS)	XPS)	(ICP-OES)	(Cal.)	l.)	(Cal.)	CoO
10	7.61	39.41	52.98	15.96	1.21	6.29	8.46	7.50
20	12.04	41.61	46.34	18.76	2.25	7.81	8.69	10.06
30	6.96	43.23	49.81	22.83	1.59	9.86	11.35	11.45

The electrochemically active surface area (ECSA) of the used catalysts is determined with aid of their electrochemical double-layer capacitances (C_{dl}). For all catalysts, the differences in current density variation ($\Delta J=J_a-J_c$) at an overpotential of 1.27 V plotted against the scan rate fitted to a linear regression enables the estimation of C_{dl} . After extracting the C_{dl} from the fitted linear regressions, we cancalculated the electrochemically active surface area (ECSA) from the equation of ECSA = C_{dl}/C_s , where C_s are assumed to be same for all electrodes. Thus, the variation trend of ECSA is in line with that of C_{dl} .

As for Faradaic active sites (FASs), they can be calculated by the following equations^[S1].

$$S = \int_{E_1}^{E_2} i(E)dE$$

$$q *= \frac{1}{vms} \int_{E_1}^{E_2} i(E)dE$$
(Eq. S2)

Table S2 Electrochemical parameters of three CoP/BP heterostructures**

Voltage	S	V	т	S	q*
(V)		(vs ⁻¹)	(mg)	(mg cm ⁻²)	(mC cm ⁻² mg ⁻¹)
10	0.263	0.1	0.025	0.07065	1489.0
20	0.296	0.1	0.025	0.07065	1675.9
30	0.428	0.1	0.025	0.07065	2423.2

** q^* , v, m and s is the voltammetry charge density, scan rate, mass of catalyst loaded on the exposed surface and surface area of glassy carbon electrode, respectively. Their units are mC cm⁻² mg⁻¹, V s⁻¹, mg and cm², respectively. According to the following equations^[S1, S2], S and q^* in the potential range of E₁ to E₂ were respectively calculated.

Fig. S2. XPS survey spectra of a bulky BP, BP NSs electrosynthesized at 30 V, the CoP/BP-30 heterojunction, the CoP/BP-20 heterojunction and the CoP/BP-10 heterojunction.

Fig. S3 TEM image of the CoP/BP-30 heterojunction

Fig. S4 The overpotential at a current density of 10 mA cm⁻² in 1 M KOH solutionon over a RuO_2 catalyst, a bulky BP, BP NSs electrosynthesized at 30 V, the CoP/BP-30

heterojunction, the CoP/BP-20 heterojunction and the CoP/BP-10 heterojunction.

Fig. S5 The compared OER performance between CoP/BP-30 heterostructure and CoP/BP mixture samples (CoP/BP (34.8%)).

Fig. S6 The OER polarization curves obtained by normalizing the raw current to the electrochemical surface area for the CoP/BP-30 heterojunction, the CoP/BP-20 heterojunction and the CoP/BP-10 heterojunction in 1 M KOH solution.

Fig. S7 The chronopotentiometric measurement of CoP/BP-30 precatalyst.

Fig. S8 CVs of the CoP/BP-10, CoP/BP-20 and CoP/BP-30 heterojunctions at different scan rates in 1 M KOH.

Fig. S9. (a) Co 2p, (b) P 2p and (c) O 1s XPS spectra of the CoP/BP-30R heterojunction after in-situ activation.

Fig. S10 TEM (a) and HRTEM (b,c), STEM (d) images of the CoP/BP-30 heterojunction after the stability test; EDS mappings of the scanned area (d), the elements of P (e), Co (f) and O (g) in the CoP/BP-30 heterojunction stability test.

Fig. S11 (a) Co 2p XPS and (b) P 2p XPS spectra of CoP/BP-30 heterojunction after stability test.

Supporting references

[S1] G. Zhang, J. Yang, H. Wang, H. Chen, J. Yang, F. Pan, ACS Appl. Mater. Interfaces2017, 9, 16159.