Supporting Information

A General MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting

water oxidation electrocatalysis

Cheng Wang ^a, Hongyuan Shang ^a, Yuan Wang ^a, Jie Li ^a, Siyu Guo ^{*a}, Jun Guo ^b,

Yukou Du*a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P.R. China.

^b Testing and Analysis Center, Soochow University, Suzhou, 215123, P.R. China.

* Corresponding authors: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: syguo@suda.edu.cn; duyk@suda.edu.cn (Y. Du)

Experimental section

Synthesis of CoFe hydroxide

In a typical synthesis, $Co(NO_3)_2 \cdot 6H_2O$ (1.092 g) and $Fe(NO_3)_3 \cdot 9H_2O$ (0.048 g) were dissolved in methanol solution (15 mL) to form solution A, and 2-methyl imidazole (0.616 g) was dissolved in methanol (15 mL) to form solution B. Subsequently, solution B was dropped into solution A under sonication, and sustained sonication for 10 minutes. The mixed solution was then transformed into a Teflon-lined stainlesssteel autoclave and maintained at 120 °C for 4 h. After being cooled to room temperature, the CoFe were collected by centrifugation and washing 3 times with methanol.

Synthesis of CoFeM (M = Bi, Ni, Mn, Cu, Ce, Zn)

Co(NO₃)₂·6H₂O (1.092 g), Fe(NO₃)₃·9H₂O (0.024 g) and Bi(NO₃)₃·5H₂O (0.028 g) were dissolved in methanol solution (15 mL) to form solution A, and 2-methyl imidazole (0.616 g) was dissolved in methanol (15 mL) to form solution B. Subsequently, solution B was dropped into solution A under sonication, and sustained sonication for 10 minutes. The mixed solution was then transformed into a Teflon-lined stainless-steel autoclave and maintained at 120 °C for 4 h. After being cooled to room temperature, the CoFeBi were collected by centrifugation and washing 3 times with methanol. For the synthesis of other CoFe-based hydroxides, all the conditions are same to those of CoFeBi except by using Ni(NO₃)₂·6H₂O (Mn(NO₃)₂·4H₂O, Cu(NO₃)₂·3H₂O, Ce(NO₃)₃·6H₂O, Zn(NO₃)₂·6H₂O) as another metal precursor under sonication conditions.

Syntheses of CoFeM phosphides

To obtain CoFe-based trimetallic phosphides, 10 mg of the as-prepared CoFe-based hydroxides and excessive NaH_2PO_2 were placed in two separate positions in a tube furnace with NaH_2PO_2 at the upstream side. Then, the precursor were heated up to 350 °C with a heating rate of 2 °C min⁻¹ and kept at this temperature for 2 h under flowing Ar. The final products were collected as CoFeM phosphides.

Characterizations

The chemical compositions of the all samples were determined by SEM-energydispersive-X-ray spectroscopy (SEM-EDX). Low-magnification transmission electron microscopy (TEM) was performed on a HITACHI HT7700 at 120 kV. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and HRTEM was recorded on a FEI TecnaiG2F2 FEI Talos F200X S/TEM with a fieldemission gun at 200 kV. X-ray photoelectron spectroscopy (XPS) was performed on SSI S-Probe XPS Spectrometer. Powder X-ray diffraction (PXRD) patterns were collected on X'Pert-Pro MPD diffractometer (Netherlands PANalytical) with a Cu K α X-ray source ($\lambda = 1.540598$ Å).

Electrochemical tests

All electrochemical measurements were performed on CHI660 workstation (Chenhua, Shanghai) by using the three-electrode system. The system consisted of a graphite rod counter electrode, Ag/AgCl reference electrode, and a glassy carbon electrode (GCE) as working electrode. To prepare the catalyst ink, 6 mg catalysts were added into a mixture solution including 1.6 mL of isopropanol, 0.4 mL of H₂O and 20 μ L Nafion. After 30 min sonication, 20 μ L catalyst ink was deposited on glassy carbon electrode (diameter 5 mm, area: 0.196 cm²) as a working electrode. The polarization curves were performed in 1 M KOH solution. The Tafel slopes were derived from polarization curves. Prolonged CP tests were conducted at the current density of 10 mA cm⁻². Electrochemical water splitting was tested by using a two-electrode system.

Supporting Figures and Tables

Fig. S1 (a, c) The TEM and (b, d) SEM images of CoFe.

Fig.S2 (a) TEM image, (b) XRD pattern, and (c) SEM-EDS spectrum of the CoFeBi hydroxide.

Fig.S3 Survey XPS spectra of the CoFeBiP (red) and CoFeBi hydroxide (black).

Fig.S4 The onset potentials of different catalysts.

Fig.S5 LSV curves of the RuO_2 in 1 M KOH solution.

Fig.S6 Representative TEM images of the CoFeNiP hollow microspheres.

Fig.S7 LSV curves of the CoFeNiP hollow microspheres in 1 M KOH solution.

Fig.S8 CV curves of (a) CoFeBiP, (b) CoFeP, and (c) CoBiP. (d) Double layer currents of different catalysts versus scan rate.

Table	S1	OER	activity	comparison	of	different	catalysts	in	alkaline	condition	(η:
overpo	tent	ial at 1	the curre	nt density of	10	mA cm ⁻²)					

Catalyst	η(mV)	Electrolyte	Tafel slope	Reference	
			(mV/dec)		
CoFeBiP	273	1.0 M KOH	77.3	This work	
Co ₃ O ₄ -24 h	296	1.0 M KOH	67.7	J. Colloid Interface	
				Sci. 2021, 582, 322-	
				332	
Ni ₁ Co ₁ -P	343	1.0 M KOH	77	J. Alloys Compd.	
				2020, 847,	
				156514	
H-Co ₉ S ₈ /Fe ₃ O ₄	280	1.0 M KOH	87	J. Power Sources	
@SNC				2018, 391, 59-66	
N-NiCoP _x /NCF	298	1.0 M KOH	60	Chem. Eng. J. 2020,	
				402, 126257	
CoSe ₂ @C-CNT	306	1.0 M KOH	46	J. Colloid Interface	
				Sci. 2019, 533, 503-	
				512	
CoP	292	1.0 M KOH	64	Nanomaterials	
				2018, 8, 89	

CoOx/CoNy@CN _{z,700}	280	1.0 M KOH	61	Appl. Catal. B: Environ. 2020, 279, 119407
CoNi/CoNiO ₂	341	1.0 M KOH	/	Adv. Mater. 2018, 30, 1705442
Co/P-N-C-2	300	1.0 M KOH	61	J. Alloys Compd. 2020, 843, 156001
Co/FeC@NHC-1	380	1.0 M KOH	70	J. Colloid Interface Sci. 2020, 580, 794- 802
FeCo@C	302	1.0 M KOH	75	Int. J. Hydrog. Energy 2020, 45, 26574-26582
C0 ₃ O ₄ /Fe ₂ O ₃	310	1.0 M KOH	67	Chem. Eng. J. 2019, 355, 336-340