In-situ immobilization of Fe/Fe₃C/Fe₂O₃ hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction

Binbin Zhang, ^a Tongfei Li, ^a Longzhen Huang, ^a Yiping Ren, ^a Dongmei Sun, ^a Huan Pang, ^b Jun Yang, ^{c, d} Lin Xu, ^{*a} and Yawen Tang^{*a}

a Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science

Nanjing Normal University

Nanjing 210023, China

E-mail: xulin001@njnu.edu.cn, njuxulin@gmail.com (L. Xu); tangyawen@njnu.edu.cn (Y.

Tang)

b School of Chemistry and Chemical Engineering

Yangzhou University

Yangzhou 225009, China

c Nanjing IPE Institute of Green Manufacturing Industry

Nanjing 211100, China

d State Key Laboratory of Multiphase Complex Systems

Institute of Process Engineering, Chinese Academy of Sciences

Beijing 100190, China

Figure S1. TEM images of Fe/Fe₃C/Fe₂O₃ hollow nanoparticles.

Figure S2. HAADF-STEM image and EDX line scanning profiles of $Fe/Fe_3C/Fe_2O_3$ hollow nanoparticles.

Figure S3. HAADF-STEM image and elemental mapping images of the formed Fe/Fe₃C/Fe₂O₃@N-CNTs.

Figure S4. XPS survey spectrum of Fe/Fe₃C/Fe₂O₃@N-CNTs.

Figure S5. Morphological and structural characterization of Fe/Fe₃C/Fe₂O₃@N-CNTs-800. (a)-(b)

TEM images, and (c) XRD pattern.

Figure S6. Raman spectra of the Fe/Fe₃C/Fe₂O₃@N-CNT family samples obtained at different pyrolysis temperatures.

Figure S7. Morphological and structural characterization of Fe/Fe₃C/Fe₂O₃@N-CNTs-900. (a)-(b)

TEM images, and (c) XRD pattern.

Figure S8. LSV curves of the Fe/Fe₃C/Fe₂O₃@N-CNT family samples obtained at different pyrolysis temperatures.

Figure S9. Morphological and structural characterization of the Fe₃C@N-CNTs. (a)-(b) TEM

images, and (c) XRD pattern.

Figure S10. Morphological and structural characterization of the N-CNSs. (a)-(b) TEM images,

and (c) XRD pattern.

Figure S11. LSV curves of commercial Pt/C catalyst in an O₂-saturated 0.1 M KOH with and without methanol, respectively.

Figure S12. Morphological characterization of Fe/Fe₃C/Fe₂O₃@N-CNTs after the stability test.

(a)-(b) TEM images, and (c) SEM image.

Figure S13. The rate performance of the Pt/C+RuO₂-equipped ZAB.

Electrocatalysts	Eonset	E _{1/2}	Ref.
	(V vs. RHE)	(V vs. RHE)	
Fe/Fe ₃ C/Fe ₂ O ₃ @N-CNTs	0.985	0.890	This work
Fe@NMC-1	1.01	0.88	ACS Appl. Mater. Interfaces, 2019, 11, 25976
FePC-NH ₂ /HCB800	0.98	0.84	J. Energy Chem., 2019, 28, 73
Fe@N-C NT/NSs	1.0	0.82	Nanoscale, 2020, 12, 13987
Fe@C-NG/NCNTs	0.93	0.84	J. Mater. Chem. A, 2018, 6, 516
Fe/Fe ₃ C@N–C–NaCl	0.970	0.869	J. Mater. Chem. A, 2016, 4, 7781
FeCNR-750	0.96	0.83	Inorg. Chem. Front., 2020, 7, 889
Fe ₇ C ₃ @FeNC	0.96	0.83	ACS Sustainable Chem. Eng., 2019, 7, 13576
FeNPC	1.03	0.88	J. Mater. Chem. A, 2019, 7, 14732
Fe-N-C/MXene	0.92	0.84	ACS Nano, 2020, 14, 2436
Fe-CZIF-800-10	0.982	0.830	Nanoscale, 2018, 10, 9252
Fe-N-OCNT	0.96	0.86	New J. Chem., 2020, 44, 10729
Fe/Fe ₃ C@N-C-1	0.936	0.804	J. Colloid Interface Sci., 2018, 524, 93
FePc@N,P-DC	0.979	0.903	Appl. Catal. B: Environ., 2020, 260, 118198
Fe/Fe ₃ C@Fe-N _x -C	1.0	0.9	J. Energy Chem., 2021, 56, 72
Fe ₃ N@NC	0.995	0.849	Carbon, 2019, 153, 364

Table S1. Comparison of the ORR performance of the synthesized Fe/Fe₃C/Fe₂O₃@N-CNTs with previously reported Fe-based ORR catalysts in alkaline medium.

Catalysts	Power Density (mW cm ⁻²)	Electrolyte	Ref.
Fe/Fe ₃ C/Fe ₂ O ₃ @N-CNTs	126.7	$6.0~M~KOH + 0.2~M~ZnCl_2$	This work
Pt/C+RuO ₂	102.6	$6.0~M~KOH + 0.2~M~ZnCl_2$	Commercial catalysts
Ni-Fe-MoN NTs	118	6 M KOH	Adv. Energy Mater., 2018, 8, 1802327
Fe-Co ₄ N@N-C	105	6.0 M KOH + 0.2 M Zn(Ac) ₂	Appl. Catal. B: Environ., 2019, 256, 117893
u-Fe ₇ C ₃ @NC	105.3	$7.0 \text{ M KOH} + 0.2 \text{ M ZnCl}_2$	Chem. Commun., 2019, 55, 5651
Fe/Co-N/S-Cs	102.63	6.0 M KOH + 0.2 M Zn(Ac) ₂	Appl. Catal. B: Environ., 2019, 241, 95
Fe _{0.5} Ni _{0.5} @N-GR	85	6.0 M KOH + 0.2 M Zn(Ac) ₂	Adv. Funct. Mater., 2018, 28, 1706928
Fe–N–C	100	6 M KOH	Carbon, 2019, 150, 475
Fe ₂ P/NPC	111.6	6.0 M KOH + 0.2 M Zn(Ac) ₂	Carbon, 2020, 158, 885
FeO _x @N-PHCS	93.6	6.0 M KOH + 0.2 M Zn(Ac) ₂	J. Energy Chem., 2020, 49, 14
Co ₂ FeO ₄ /NCNTs	90.68	6.0 M KOH + 0.2 M Zn(Ac) ₂	Angew. Chem. Int. Ed., 2019, 58, 13291
AlFeCoNiCr	125	6.0 M KOH + 0.2 M Zn(Ac) ₂	Appl. Catal. B: Environ., 2020, 268, 118431
FC-C@NC	118.2	6.0 M KOH + 0.2 M Zn(Ac) ₂	Carbon Energy, 2020, 2, 283
A-FeNC	102.2	6.0 M KOH + 0.2 M Zn(Ac) ₂	Phys. Chem. Chem. Phys., 2020, 22, 7218
Fe ₂ Ni@NC	126	6.0 M KOH + 0.2 M Zn(Ac) ₂	Adv. Energy Mater., 2019, 8, 1903003a

Table S2. Comparison of power density of Fe/Fe₃C/Fe₂O₃@N-CNTs with other previously

reported Fe-based catalysts.