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Supporting Information 

1. XPS characterization. 

High resolution  XPS spectra were recorded with a monochromatic AlKα X-ray source (hυ = 1486.6 

eV), a detection angle of 45° as referenced to the sample surface, an analyzer entrance slit width of 400 

µm and with an analyzer pass energy of 12 eV. In these conditions, the overall resolution as measured 

from the full-width half-maximum (FWHM) of the Ag 3d5/2 line is 0.55 eV. Background was subtracted 

by the Shirley method.1 The peaks were decomposed using Voigt functions and a least squares 

minimization procedure. 

2. Ellipsometry. 

The system acquired a spectrum ranging from 2 to 4.5 eV (corresponding to 300 to 750 nm) with 

intervals of 0.1 eV (or 15 nm). To use the cell filled with N2, data were taken at an angle of incidence of 
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60 ± 1° while the compensator was set at 45°. We fitted the data with DeltaPsi 2 data analysis software 

by a regression analysis to a film on a substrate model as described by their thickness and their 

complex refractive indexes. First, we recorded a background before monolayer deposition for a cobalt 

substrate freshly evaporated on the silicon substrate. We acquired three reference spectra at three 

different places of the surface spaced of few mm. Secondly, after the monolayer deposition, we 

acquired once again three spectra at three different places of the surface. We used a 2-layer model 

(substrate/SAM) to fit the measured data and to determine the SAM thickness. We used the previously 

measured optical properties of the cobalt substrate (background) and we fixed the refractive index of 

the organic monolayer at 1.50. The usual values in the literature for the refractive index of organic 

monolayers are in the range 1.45-1.50.2, 3 The three spectra measured on the sample were fitted 

separately using each of the three reference spectra, giving nine values for the SAM thickness. We 

calculated the mean value from this nine thickness values and the thickness incertitude corresponding 

to the standard deviation. 

3. CAFM measurements. 

CAFM imaging and local current-voltage (I-V) spectroscopy were carried out using Platinum-Iridium 

coated probes SCM-PIC-V2 (Bruker), tip radius R = 25 nm, spring constant k = 0.1 N/m. In all our 

measurements, bias (V) was applied on the substrate and the current was recorded with an external 

DLPCA-200 amplifier (FEMTO) at a gain of 1µA/V, which set the current sensitivity limit at ca. 10-10 

A. The force applied on the sample by the tip was calculated from approach-retract curves prior to each 

experiment to ensure the correct vertical deflection set point with respect to the fixed force set point 

(F). The load force was set at ～ 20 nN for all the I-V measurements, a lower value leading to too many 

contact instabilities during the I-V measurements. Albeit larger than the usual load force (2-5 nN) used 
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for CAFM on SAMs, this value is below the limit of about 60-70 nN at which the SAMs start to suffer 

from severe degradations. For example, a detailed study (Ref. 4) showed a limited strain-induced 

deformation of the monolayer (≲ 0.3 nm) at this used load force. The same conclusion was  confirmed 

by our own study comparing mechanical and electrical properties of alkylthiol SAMs on flat Au 

surfaces and tiny Au nanodots.5  Moreover, we checked by topographic AFM that a load force of 20 nN 

is not indenting the SAM.6 Current-voltage spectra (I-V) were acquired on several grids (20 x 20 points 

spaced by 25 nm from each other), each grid spaced of a few mm. Data were processed using 

Gwyddion7 and WSxM8 software. We typically recorded 1200 I-V traces, used without data selection to 

construct 2D histogram of the decimal logarithm of the current versus voltage. For a given bias, we 

fitted the current histogram with log-normal distributions and extracted the relevant statistical 

quantities: the log-mean current (log-µ) and the log-standard deviation (log-σ). Topographic and 

current images (at a given bias) were also recorded simultaneously. As usually reported in literature4, 

9-11 the contact radius (a) between the C-AFM tip and the SAM surface, and the SAM elastic 

deformation (δ) are estimated from a Hertzian model:12 

  %           (S1)  

%             (S2) 

with F the tip load force (20 nN), R the tip radius (25 nm) and E* the reduced effective Young modulus 

defined as: 
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In this equation, ESAM/tip and νSAM/tip are the Young modulus and the Poisson ratio of the SAM and C-

AFM tip, respectively. For the Pt/Ir (90%/10%) tip, we have Etip = 204 GPa  and νSAM/tip = 0.37 using a 

rule of mixture with the known material data.13 These parameters for the AzBT SAM are not known 

and, in general, they are not easily determined in such a monolayer material. Thus, we consider the 

value of an effective Young modulus of the SAM E*SAM = 38 GPa as determined for the "model 

system" alkylthiol SAMs from a combined mechanics and electron transport study.4 With these 

parameters, we estimate a = 2.3 nm (contact area = 16.6 nm2) and δ = 0.2 nm. With a molecular 

packing density of 1.8 nm2/molecule (see theory, below §6), we infer that about 10 molecules are 

measured in the Co-AzBT/PtIr junction. 

 We also checked that there is no short through the SAMs by comparing the I-Vs for the Co-

AzBT/PtIr tip (Fig. 3, main text) with the typical I-Vs for a direct contact of the C-AFM tip on Co 

surface (Fig. S1), which show a current reaching the compliance limit of the preamplifier (here 10 µA) 

at V < 50 mV. 

%  

Figure S1. Typical I-Vs (20 traces) for the direct contact of the PrIr C-AFM tip on a Co surface. 
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4. XPS analysis of air-exposed cobalt 

%  

Figure S2. XPS spectra of air-exposed cobalt: (a) survey, (b) C1s, (c) O1s, (d) Co2p. 

Table S1. Identification of the peaks in the XPS analysis of air-exposed cobalt.  

Peak assignation from Refs. 14-18 

Spectra Identification Energy 
(eV)

C1s C-C 285.2

C1s C-O-C 286.3

C1s C-C=O 289.3

O1s CoO, Co3O4 529.8

O1s C-O, Co(OH)2 531.8

Co2p Co metal 2p3/2 778.2

Co2p CoO, Co3O4, 
Co(OH)2 2p3/2 780.3

Co2p satellite 785.8

Co2p Co metal 2p1/2 793.4

Co2p CoO, Co3O4, 
Co(OH)2 2p1/2 796.4

Co2p satellite 802.6
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5. XPS analysis of Co-AzBT SAM 

The O1s spectra is composed of two peaks at binding energies of 529.7 eV and 531.6 eV. These values 

are close to those observed by Chuang et al.19 on cobalt surface exposed to air (529.5 eV and 530.8 

eV). For these authors these peaks are associated to the oxidized cobalt. From the survey spectra (Fig. 

S3a), a smaller amount of oxygen is detected on Co-AzBT than on the air-exposed sample (Fig. S2a). 

For the Co-AzBT XPS analysis (Table S2), C1s peaks were observed approximately at the same 
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Figure S3. XPS spectra of Co-AzBT: (a) survey, (b) C1s, (c) O1s, (d) Co2p, (e) S2p, (f) N1s.



binding energy as on a cobalt surface exposed to the air without SAM (see Table S1). The first peak 

associated to C-C and C-S bonds and located at 285.1 eV was also observed on the sample of air-

oxidized cobalt without SAM at 285.2 eV. However, the peak area is lower for the air-oxidized cobalt 

(divided by 4.8) compared to the sample with the SAM (Co-AzBT), with a peak area of 5192 (a.u.) and 

1087 (a.u.) for Co-AzBT and air-oxidized cobalt respectively. So, the peak at 285.1 eV observed on 

Co-AzBT is a contribution of the carbon atoms of the AzBT molecule but also of the surface 

contamination. If we suppose that the contamination is the same for both the samples, we estimate that 

the peak observed at 285.1 eV on Co-AzBT is due to 21 % to the contamination and 79 % to the AzBT 

molecule grafted on the cobalt surface.  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Table S2. Identification of the peaks in the XPS analysis of Co-AzBT.   

Peak assignation from Refs. 14-18	

6. Full theoretical methodology. 

Co-AzBT self-assembled monolayers. First, the geometries of the isolated AzBT molecules are relaxed 

with forces below 0.01 eV/Å at the density functional theory (DFT) level using the Perdew-Burke-

Ernzerhof (PBE) functional within the generalized gradient approximation (GGA),20 as implemented in 

the QuantumATK software.21, 22 The valence electrons are described within the LCAO approximation, 

with a double-zeta plus polarization basis set (DZP) whilst the core electrons are described by the 

norm-conserving Troullier-Martins pseudopotentials.23 We use a density mesh cutoff of 100 Ha and 

Spectra Peak Identification Energy 
(eV)

C1s C-C, C-S 285.1

C1s C-O-C 285.6

C1s C-C=O 288.7

O1s CoO, Co3O4 529.7

O1s C-O, Co(OH)2 531.6

Co2p Co metal 2p3/2 778.3

Co2p CoO, Co3O4 
2p3/2 780.5

Co2p satellite 785.1

Co2p Co metal 2p1/2 793.4

Co2p CoO, Co3O4 
2p1/2 796.4

Co2p satellite 802.6

S2p e1' CoS S2p3/2 162.6

S2p e2' CoS S2p1/2 163.7

S2p e3' CS S2p3/2 164.3

S2p e4' CS S2p1/2 165.4

N1s N in azobenzene 400.2
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multipole boundary conditions to correct for the interaction between the single molecules introduced in 

a large unit cell and their images generated by the Periodic Boundary Conditions (PBC). The Co(111) 

surface is modeled by a slab of five layers with 11 × 3 cobalt atoms in each layer and lattice parameters 

a= 27.645 Å, b= 7.539 Å and α= 120°. This corresponds to a theoretical area per molecule of 180 Å2 

(see Fig. S4). A vacuum region of approximately 30 Å was introduced above the surface and 10 Å 

below it. The coordinates of the bottom three layers were kept fixed in the bulk lattice geometry while 

the two top layers were relaxed until the final forces acting on the atoms are less than 0.02 eV/Å. For 

this relaxation, we use the Perdew-Burke-Ernzerhof (PBE) functional with the spin generalized 

gradient approximation (SGGA),20, 24 a double-zeta plus polarization basis set, a density mesh cutoff of 

100 Ha and a (2×8×1) k-sampling. 

%  

Figure S4. (a) side and (b) top view of the Co (111) slab. 

 Once the geometry is relaxed, the electronic structure and by extension the work function of the 

surface are computed using a 6×24×1 k-sampling, a 100 Ha mesh cutoff and a single-zeta plus 

polarization (SZP) basis set. We reduce the basis set here to be consistent with electronic structure 

computations achieved on larger systems such as SAMs and molecular junctions. For the resolution of 

Poisson’s equation, Neumann (fixed potential gradient) and Dirichlet (fixed potential) were imposed on 

the left- and right-hand side of the slab, respectively, combined with periodic boundary conditions 

(PBC) in the in-plane directions. These mixed PBCs provide an alternative to the widely used slab 
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dipole correction.25, 26 The Fermi energy is calculated initially for cobalt so that its energetic position 

ensures that the occupation of the density of states of the system equals the total number of electrons. 

Within this framework, we compute a work function of 3.78 eV for the Co(111) surface, a value too 

low compared to the experimental value of 5.00 eV.27 This result is fully expected due to the use of 

short range localized atomic orbitals that induces an artificial push-back effect at the interface and thus 

reduces the metal work function. To solve this numerical problem, we added a layer of ghost atoms in 

the vacuum next to the surface to better describe the tail of the electron density, an approach already 

implemented in QuantumATK Q-2019.12-SP1.21 Several tests have been performed in order to identify 

the nature of the ghost atoms, the converged distance from the top layer, the basis set and the 

pseudopotential that provide good accuracy at reasonable computational times. The obtained results 

indicate that the use of a layer of platinum ghost atoms described by medium basis sets and 

PseudoDojo pseudopotentials28 at a distance of 1.6 Å from the top cobalt layer provides a work 

function of 5.07 eV, which is in very good agreement with the reported experimental value of 5.00 eV.27 

 To build the Co-AzBT SAMs, the molecules are tilted to fit the measured SAM thickness and 

then anchored on the cobalt surface through a sulfur atom. The SAM structures are optimized by 

relaxing the molecules forming the SAMS and the top two metal layers until forces are below 0.04 eV/ 

Å. The exchange correlation SGGA.PBE functional has been used, with a (DZP) basis set for valence 

cobalt electrons (i.e., to describe the valence molecular orbitals), a (2×8×1) k-point sampling and a 

mesh cutoff of 100 Ha. The electronic structure and the SAM induced work function shift are then 

computed following the same method as used for the calculations on the bare cobalt surface, with a 

DZP basis set for the valence molecular orbitals. As described for the metal surface, a second ghost 

layer of gold atoms has been also positioned at -0.1 Å below the top molecular atoms to reduce the 

artificial push-back effect and prevent any artificial creation of bond dipole due to BSSE (Basis Set 
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Superposition Errors).29 These two effects may induce errors larger enough to prevent a direct 

comparison between the work function shifts of the different systems. 

 The change in the work function upon SAM deposition, generally referred to as ‘vacuum level 

shift’ is well studied in the literature30, 31 and has two main possible origins: (1) the intrinsic dipole 

moment of the molecules, reduced by the induced dipole arising from the depolarization effects 

triggered by the adjacent molecules;32 and (2) the interfacial electronic reorganization upon formation 

of the Co-S bond resulting in a bond dipole in the vicinity of the interface. The apparent work function 

shift is then simply described as the sum of a molecular contribution (ΔΦSAM) and a bond dipole 

(ΔΦBD): 

%           (S4) 

The relative intensities of these two contributions depend on whether we adopt a neutral or a radical 

approach to describe the bonding of thiol to the metal surface. The neutral approach describes the 

adsorption as the replacement of a bond (the S-H bond) with a S-Co bond whereas the radical scenario 

considers the formation of a new covalent bond between the radical and the cobalt surface. For the sake 

of consistency with our previous studies,33-35 we adopt here the ‘radical scenario’ for computing the 

molecular contribution and the bond dipole. To this end, we compute the electrostatic potential profile 

across a layer of radicals obtained by removing the cobalt atoms from the full system while keeping the 

same geometry for the molecular part; we then compute the energy difference between the left and 

right side of the layer, which corresponds directly to ΔΦSAM. The value of BD is obtained by 

subtracting ΔΦSAM from the total shift. We note for sake of completeness that the amplitude of the 

work function shift can be related to the corresponding dipole moment by the Helmholtz equation:36, 37 

%            (S5) 

ΔΦ = ΔΦSAM +ΔΦBD

ΔΦ = µ
ε0A
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where µ is the dipole moment in the unit cell, projected along the axis normal to the surface, ε0 is the 

vacuum permittivity and A is the area per dipole. 

Co-AzBT molecular junctions. In a final stage, we add a second electrode on the top side of the 

molecular layer to build a single heterogeneous molecular junction Co-AzBT/Au. This second 

electrode is created by conserving the lattice parameters of the cobalt (111) surface and by converting 

the cobalt atoms to gold atoms to avoid problems related to lattice incommensurability. The choice of 

this type of electrode instead of a typical cobalt electrode is rationalized by two facts: (1) the 

measurements were performed with a PtIr tip, which is not a ferromagnetic material; and (2) the work 

function calculated for this top electrode is 4.81 eV, which is in good agreement with the experimental 

PtIr work function of 4.86 eV.38 Note that this work function has been calculated by adding a ghost 

layer of gold atoms at a distance of 1.7 Å from the top gold layer of the second electrode.  

 A van der Waals contact is assumed between the molecular layer and the top electrode, with an 

interatomic distance determined as the sum of van der Waals radii of the hydrogen and gold atoms 

(2.86 Å). The electronic transport calculations of the Co-AzBT/Au junctions were performed by the 

combination of DFT to the Non-Equilibrium Green’s Function (NEGF) formalism,39 as implemented in  

QuantumATK Q-2019.12-SP1 package.21, 22 This formalism has been widely recognized as a robust 

tool to rationalize the experimental results and predict new features and trends for charge transport in 

molecular junctions.35, 40, 41 The exchange-correlation potential is described with the SGGA.PBE 

functional20 whereas the Brillouin zone was sampled with a (3×12×100) k-sampling. We expand the 

valence electrons in a single zeta plus polarization basis set (SZP) for metal atoms (gold, gold ghost 

and cobalt), and a double zeta polarization basis set (DZP) for the other atoms. The core electrons are 

frozen and described by the norm-conserving Troullier−Martins pseudopotentials.23 As for SAMs 

calculations, the platinum ghost atoms are described by a medium basis set and PseudoDojo potentials.
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28 The mesh cutoff was set to 80 Ha with a temperature of 300 K. These parameters have been carefully 

tested to ensure the convergence of the transmission spectrum. 

 The I-V characteristics have been calculated on the basis of the Landauer-Büttiker formalism,42 

that links the transmission spectrum to the current in a coherent transport regime. When a bias is 

applied, the current is calculated via the integration of the transmission spectrum within a bias window 

defined by a Fermi-Dirac statistics in the left and right electrodes: 

%        (S6) 

Where T(E) is the transmission spectrum, E the incident electron energy,  f the Fermi-Dirac 

function f(E-µ)=[1+exp(E-µ)/kT]-1,  µL/R  the chemical potential of the left/right electrode, e the 

elementary charge, h the Planck constant, k the Boltzmann constant and V the applied bias, with 

⎜µL - µR⎟ = eV.  

 It is important to note that for an accurate estimation of the current, the transmission 

spectrum T(E) should be calculated in a self-consistent way for each bias. However, it is possible 

to obtain a reasonable approximation for the current at low bias by using the transmission 

spectrum at zero bias. This approximation is required here for our junctions with a large unit cell 

and a spin-polarized electrode because the self-consistent calculations become very time 

consuming. Accordingly, the current-voltage properties of Co-AZBT/Au were predicted by using 

the transmission calculated at equilibrium. 

I(V )= 2e
h

T(E) f E − µL( )− f E − µR( )⎡⎣ ⎤⎦∫ dE
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7. Junctions under bias 

The computed ON/OFF ratios can be affected by the voltage drop profile across the junction. 

This voltage drop is hard to guess and should be computed theoretically. However, as explained 

in the methodology, these systems were computationally too heavy to be driven out of 

equilibrium. To get a qualitative idea of the ratio expected from theory, we thus integrated the 

equilibrium transmission by considering three extreme scenarios (see Fig. S5): 

 1. Under bias, one Fermi energy is fixed and the other one is driven up by e⎪V⎪.  

 2. Under bias, one Fermi energy is fixed and the other one is driven down by -e⎪V⎪. 

 3. Under bias, one Fermi level is driven up by e⎪V⎪/2 and the second level is driven 

down by -e⎪V⎪/2. 

Figure S5.  Semilog scale plot of current (nA) versus bias when (1) a single Fermi level  is driven 

up by e⎪V⎪, (2) a single Fermi level is driven down by -e⎪V⎪ and (3) one Fermi level is driven up 

by e⎪V⎪/2, and the second level is driven down by -e⎪V⎪/2. 

With our simplified methodology, the first and second scenario should give rise to a significant 

rectification as shown by the difference of the calculated I-V shapes between cases (1) and (2), 

because the HOMO and LUMO levels are not located symmetrically with respect to the Fermi 

energy (Fig. 6, main text), which is not seen experimentally. We thus conclude that the 
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symmetrical bias repartition, scenario (3), is more reasonable. Noteworthy, the higher slope that 

appears beyond 0.3V for cis1 (see Fig S5-c) arises from the integration of the equilibrium 

transmission spectrum, which is clearly an approximation. Since this feature is not seen in the 

experimental curve, we speculate that the equilibrium transmission is not accurate beyond 0.3V 

and hence that our theoretical ratios are more accurate below 0.3V. We report the predicted ratios 

corresponding to the three scenarios in Table S3. In this low voltage range, the three scenarios 

predict ratios between trans and cis1 between 14 and 53, hence with the same order of magnitude 

as the experimental values. 

Table S3. The calculated ON/OFF ratio between trans and cis1 forms for the different scenarios. 
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