Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supplementary information

In-situ Synthesis of Fe₂O₃ Nanospheres/Co₃O₄ Nanowires-Connected Reduced Graphene Oxide Hybrid Networks for High-Performance Supercapacitor

Yan Wang,^{*,a,b} Jianhao Zhou,^a Zhiyu Zhou,^a Huifang Lv,^a Bingni Gu,^{c,d,e} Kuangye Wang, ^{c,d,e} Zexiang Chen,^{*, a,b} Xinyu Yan,^a Jijun Zhang,^a Wen-Wu Liu,^f and Yu-Lun Chueh^{*, c,d,e}

^a School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and

Technology of China, Jianshe North Road 4, 610054 Chengdu, China

^b Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, 610054

Chengdu, China

^c Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

^d Frontier Research Center on Fundamental and Applied Sciences of Matters, Hsinchu, 30013, National Tsing Hua University, Hsinchu 30013, Taiwan

^e Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.

^f State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University

of Technology, Lanzhou 730050, PR China

*E-mail: wangyan127@uestc.edu.cn (Y. Wang); zxchen@uestc.edu.cn (Z. X. Chen) and

ylchueh@mx.nthu.edu.tw (Y. L. Chueh)

Table S1

comparison of energy density, power density or specific capacitance of RGO-based composites			
Material	Capacitance (F·g ⁻¹)	Energy density(Wh·k g -1)	Power density(kW⋅k g -1)
Fe-Co-S/GNF	850		
Mn-Zn-Fe-O/G-ink		75.65	6.6
RGO/Mn ₃ O ₄	194.8		——
Fe₃O₄@PGNs	312-892		
Fe ₂ O ₃ /rGO	522		——
This work	784	70.78	9.94

Figure S1 Fourier transform infrared spectroscopy (FTIR) spectra of rGO/Co_3O_4 and rGO/Co_3O_4 @Fe₂O₃ samples.

Figure S2 Photographs of (a) GO suspensions and (b)PSS-modified rGO.

Figure S3 (a) Low- and (b) high-magnification SEM images of rGO/Fe₂O₃ NSs prepared with the similar method.

Figure S4 SEM images of Co_3O_4/Fe_2O_3 prepared without rGO by the similar method.

Figure S5 SEM images of Mixture (physical mixture of rGO, Co₃O₄ and Fe₂O₃).

Figure S6 (a)–(c) EDS mapping images of Fe and O from a Fe₂O₃ NS.

Figure S7 (a)–(e) EDS mapping images of C, O, Fe and Co from the $rGO/Co_3O_4@Fe_2O_3$ hybrid networks. (f) EDS spectra of $rGO/Co_3O_4@Fe_2O_3$ hybrid networks.

Figure S8 (a) Charge-Discharge curves of the rGO/Co₃O₄ NWs, rGO/Fe₂O₃ NSs the Mixture and rGO/Co₃O₄@Fe₂O₃ hybrid networks at 1 A·g⁻¹. (b) Rating performance of rGO/Co₃O₄ NWs, rGO/Fe₂O₃ NSs the Mixture and rGO/Co₃O₄@Fe₂O₃ hybrid networks at various discharge current.

Figure S9 The Brunauer–Emmett–Teller (BET) surface areas and the pore size distribution of the three samples were tested. (a)The surface area of $rGO/Co_3O_4@Fe_2O_3$ hybrid networks is 165 m²·g⁻¹, which is larger than that of either (b) rGO/Co_3O_4 NWs or rGO/Fe_2O_3 NSs.

Figure S10 The comparison of the complex plane impedance plots (Nyquist plots) of $rGO/Co_3O_4@Fe_2O_3$ hybrid networks at different cycles.

Figure S11 Cycling testes of (a) NiAl–LDH//rGO/Co₃O₄@Fe₂O₃, (b) NiAl–LDH//rGO/Co₃O₄ and (c) NiAl–LDH//rGO/Fe₂O₃ (d) NiAl–LDH//Mixture devices at a current density of 1.0 $A \cdot g^{-1}$ and the corresponding Coulombic efficiency of the devices.