Supplementary Information

Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compounds detection

Kamrul Hassan,^{a,b} Tran Thanh Tung,^{a,b} Nathan Stanley,^{a,b}, Pei Lay Yap,^{a,b} Farzaneh

Farivar,^{a,b} Hadi Rastin,^{a,b} Md Julker Nine^{a,b} and Dusan Losic^{a,b}*

^aSchool of Chemical Engineering and Advanced Materials, The University of Adelaide,

Adelaide, SA 5005, Australia

^bARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia

Contact angle measurement:

Fig. S1. Contact angle measurement of printed graphene ink (c) before annealing, and (d) after annealing at 250 °C temperature.

Table S1. Contact angles and calculated surface energy of printed graphene ink (a) before annealing and (b) after annealing at 250 °C temperature.

Sample	Contact angle (°)	Owe	ens–Wendt me	ethod ²⁵		Wu method ²⁶	
		$\gamma_{sv}(mN/m)$	$\gamma_{sv}^D(mN/m)$	$\gamma_{sv}^{p}(mN/m)$	$\gamma_{sv}(mN/m)$	$\gamma_{sv}^D(mN/m)$	$\gamma_{sv}^{p}(mN/m)$
Graphene ink (before annealing)	69.60	97.45	43.58	54.27	108.69	56.83	51.84
Graphene ink (after annealing)	96.95	96.95	0.005	0.005	-3.8	-0.98	-2.05

Table S2. Surface area and surface volume calculation for 3D printed sensor and conventional sensor.

For 3D printed sensor:	For conventional sensor (non-printed):			
No of printed line=13,	No of spherical curve (drop cast) $= 1$,			
Length (L) = 6.60 mm,	radius(r) = 2.5 mm,			
width $(d) = 0.6 mm$,	average thickness (T_{avg}) = 145 μm = 0.145 mm			
average thickness (T_{avg}) = 15 μm = 0.015 mm Active area eff (A printed sensor) = N × (L × d) = 13 × (6.60 × 0.6) = 51.48 mm ²	Active area eff (A printed sensor) = $N \times \pi r^2$ = $1 \times (3.1415 \times (2.5)^2)$ = 19.625 mm^2			
Active volume $_{eff}$ = Active area $eff \times T$ $_{Avg}$ = 51.48 × 0.015 = 0.7722 m ³	Active volume $_{eff}$ = Active area $_{eff} \times T_{Avg}$ = 19.625 × 0.145 = 2.845 m ³			
$SA: V = Active area _{eff} / Active volume _{eff}$ $= 51.48 / 0.7722 = 66.66$	$SA: V = Active area _{eff} / Active volume _{eff} = 19.625 / 2.845 = 6.91$			

Humidity effect:

Fig. S2. Transient response of printed sensors to (a) methanol and (b) acetone vapour under different humidity at room temperature (20 °C).

Sensor stability and durability:

Fig. S3. Time reliance of the printed sensor (c) baseline resistance value and (d) response value, monitored over a fourteen-day period, where on each day the printed sensor was exposed to saturated ethanol biomarkers at room temperature (20 °C).