Emerging flat bands in large-angle twisted bi-layer graphene

under pressures

Liangbing Ge^{a}, Kun $\mathrm{Ni}^{\mathrm{ab}}{ }^{*}$, Xiaojun Wua, Zhengping Fuac, Yalin Luac, Yanwu Zhu ${ }^{\text {ab }}{ }^{\text {ac }}$ ${ }^{\text {a }}$ Hefei National Research Center for Physical Sciences at the Microscale, \& CAS Key Laboratory of Materials for Energy Conversion, \& Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
b_{i}-ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China 'Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
Email: nikun@ustc.edu.cn; zhuvanwu@ustc.edu.cn

Fig. S1 (a), (b), (c), (d) are geometry models with twist angles of $9.4^{\circ}, 13.2^{\circ}, 21.8^{\circ}$ and 27.8°, respectively. Two different layers in TBG are colored by red and blue, respectively.

1.Definition of $\Delta \mathbf{q}$.

There are148 carbon atoms in the 9.4°-TBG model. We divide 148 carbon atoms into 26 groups, based on the P321 symmetry of the cell, as shown in Fig. S2, the symmetrical unique carbon atoms are drawn with same color. There are 6 carbon atoms in the first 24 groups, and 2 carbon atoms in the last 2 groups. Then the bader charge is calculated and averaged. The average value $A_{i}(i=1,2,3, \ldots, 26)$ of each group can be obtained. Thus, Δq is defined as:
$\Delta q=q_{\text {max }}-q_{\text {min }}$
Where $q_{\max }$ is the maximum value and $q_{\min }$ is the minimum value among A_{i}.

Fig. S2 The schematic show of 26 groups of carbon atoms in 9.4°-TBG model, the carbon atoms in one group are drawn with same color.

Fig. S3 (a) and (b) are PCD of the bottom conduction band for 9.4°-TBG at pressures of 0 GPa and 75.52 GPa , respectively. The dashed line indicates the unit cell of 9.4° TBG. The iso-surface value is $6 \times 10^{-4} \mathrm{e} / \mathrm{Bohr}^{3}$.

Fig. S4 (a), (b), (c), (d) are band structures under different pressures for twist angle 9.4°.

Fig. $\mathrm{S5}$ (a), (b), (c), (d) are band structures under different pressures for twist angle 13.2°.

Fig. S6 (a), (b), (c), (d) are band structures under different pressures for twist angle 21.8°.

Fig. $\mathrm{S7}$ (a), (b), (c), (d) are band structures under different pressures for twist angle 27.8°

Fig. S 8 The relationship between IDOS and pressure with different twisting angles.

