Plasma-engineered bifunctional Cobalt-metal organic framework derivatives for high-performance complete water electrolysis

Wenxia Chen^{a*}, Wei Wei^a, Kefeng Wang^a, Nan Zhang^a, Guangliang Chen^b, Yingjie Hu^{c*} and Kostya (Ken) Ostrikov^d

^aSchool of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.

^bKey Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

^cKey Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China.

^dSchool of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.

*Corresponding authors E-mail: <u>wxchenedu@163.com</u>, <u>huyj113@qq.com</u>.

Fig. S1 (a) SEM images of the ZIF-67 and corresponding (b) TEM images.

Fig. S2 3D ZIF-67 polyhedron is disposed via P dopants and pyrolysis procedures simultaneously

under Ar-N $_2$ RF plasma discharge process.

Fig. S3 The SEM images of the MOFs-derived CoPO on NF.

Fig. S4 (a) The XRD patterns of these samples and (b) the enlarged view.

	Elem	Weight %	Atomic %
-	СК	18.65	33.01
P	O K	29.19	37.99
	РK	26.90	17.47
	Co K	15.23	5.32
<u>.</u>			
- P			
1	6		
CO CO	T .		A
_ 			7 9
0	2	4	6 8
v	2	-	0 0

Fig. S5 The EDX analysis of the CoPO/NF.

Fig. S6 SEM and TEM images of the CoP and Co_3O_4 .

Fig. S7 (a) SEM and (b) TEM images of ZIF-67 treated by Ar-N₂ RF plasma.

Fig. S8 (a) and (b) TEM, (c) HRTEM, and (d) the corresponding SAED pattern of the CoP samples.

Fig. S9 The N_2 adsorption-desorption isotherm and pore size distribution of the CoPO and ZIF-67.

Fig. S10 The EPR analysis of the prepared samples.

Fig. S11 SEM images of CoPO with different amounts of P.

Fig. S12 LSV curves of (a) 3%CoPO/NF, 5%CoPO/NF, 7%CoPO/NF, 11%CoPO/NF for the OER,

and (d) the corresponding overpotential at 10 mA cm⁻².

Fig. S13 The LSV curves normalized by ECSA for the prepared samples.

Fig. S14 LSV curves of (a) 3%CoPO/NF, 5%CoPO/NF, 7%CoPO/NF, 11%CoPO/NF for the HER,

and (d) the corresponding overpotential at 10 mA cm⁻².

Fig. S15 The LSV curves normalized by ECSA for the prepared samples.

Fig. S16 The electrochemical impedance spectroscopy (EIS) spectra.

Fig. S17 CV curves at various scan rates in the potential range -0.02~0.02 V vs. RHE for (a) ZIF-67/NF, (b) Co₃O₄/NF, (c) CoP/NF and (d) CoPO/NF, respectively.

Fig. S18 The SEM image of the CoPO/NF after the OER and HER tests.

Fig. S19 The TEM image of the CoPO/NF after the OER and HER tests.

Fig. S20 XPS spectra of (a) Co 2p, (b) O 1s and (c) P 2p after electrochemistry test.

Materials	Supports	Electrolytes	$\eta_{J=10 \text{ mA cm}}^{-2}$ (mV)	References
CoPO/NF	Ni foam	1 M KOH	275	This work
CoP/NCNHP	-	1 M KOH	310	1
CoP-2	-	1 M KOH	310	2
Co 2 P NCs	-	1 M KOH	280	3
Co-P film	-	1 M KOH	345	4
Co/CoP	-	1 M KOH	340	5
NiFe/NiCo ₂ O ₄ /NF	Ni Foam	1M KOH	340	6
NiCoP/C	-	1M KOH	330	7

Table S1. The comparison of OER performance with state-of-the-art electrocatalysts.

Table S2 TOF of the as-prepared catalysts at overpotential of 200, 250 and 300 mV corresponding

Samples TOF s ⁻¹ (mV)	ZIF-67/NF	C0 ₃ O ₄ /NF	CoP/NF	CoPO/NF
η=200	7.410×10 ⁻⁷	1.523×10 ⁻⁶	4.244×10 ⁻⁶	4.954×10 ⁻⁶
250	8.809×10 ⁻⁷	1.860×10 ⁻⁶	4.617×10 ⁻⁶	1.467×10 ⁻⁵
300	1.471×10 ⁻⁷	2.539×10 ⁻⁶	1.581×10 ⁻⁵	7.721×10 ⁻⁵

to OER.

Materials	Supports	Electrolytes	$\eta_{J=10 \text{ mA cm}}^{-2}$ (mV)	References
CoPO/NF	Ni foam	1 М КОН	156	This work
Co1Mn1CH	-	1 M KOH	180	8
Co-NC/CNT	NF	1 M KOH	203	9
Co-Zn/PNC	NF	1 M KOH	180	10
Co/β-Mo ₂ C@N-CNTs	-	1 M KOH	170	11
Co(OH)2@NCNT	NF	1 M KOH	170	12
O-Co ₂ P-3	-	1M KOH	160	13
CoP@C-NPs/GA-5		1M KOH	225	14
Co/CoP	-	1M KOH	253	15
CoPS@NPS-C	-	1M KOH	191	16

Table S3. The comparison of HER performance with state-of-the-art electrocatalysts.

Table S4. TOF of the as-prepared catalysts at overpotential of 200, 250 and 300 mV corresponding

Samples TOF s ⁻¹ (mV)	ZIF-67/NF	C0 ₃ O ₄ /NF	CoP/NF	CoPO/NF
ղ=200	6.950×10 ⁻⁷	1.498×10 ⁻⁶	3.991×10 ⁻⁶	3.995×10 ⁻⁶
250	7.998×10 ⁻⁷	1.796×10 ⁻⁶	3.895×10 ⁻⁶	1.051×10 ⁻⁵
300	1.501×10 ⁻⁷	2.241×10 ⁻⁶	1.052×10 ⁻⁵	6.154×10 ⁻⁵

to HER.

Table S5. Comparison of the full water-splitting performances of CoPO/NF with other state-of

 the-art electrocatalysts in 1.0 M KOH.

Materials	Cell voltages (V) at J = 10 mA cm ⁻²	References
CoPO/NF	1.62	This work
NiCo ₂ O ₄	1.65	17
Co ₁ Mn ₁ CH	1.68	8
Ni-P/CP	1.63	18
CoP/NCNHP	1.64	1
NiCo ₂ N/NF	1.70	19
BP/Co ₂ P	1.92	20
(Co-NMC) ₁ /NC/GCE	1.78	21

References:

- 1 Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q.
- Liu, D. S. Wang, Q. Peng, C. Chen, Y. D. Li. J. Am. Chem. Soc., 2018, 140, 2610-2618.
- 2 G. Y. Zhou, M. Li, Y. L. Li, H. Dong, D. M. Sun, X. E. Liu, L. Xu, Z. Q. Tian, and Y. W. Tang, Adv. Funct. Mater., 2020, **30**, 1905252.
- 3 H. Li, Q. Li, P. Wen, T. B. Williams, S. Adhikari, C. C. Dun, C. Lu, D. Itanze, L. Jiang, D. L.
- Carroll, G. L. Donati, P. M. Lundin, Y. J. Qiu, and S. M. Geyer. . Adv. Mater., 2018, 30, 1705796.
- 4 N. Jiang, B. You, M. L. Sheng, and Y. J. Sun, Angew. Chem., 2015, 127, 6349-6352.
- 5 Y. C. Hao , Y. Q. Xu, , W. Liu, , X. M. Sun, Mater. Horiz., 2018, 5, 108-115.
- 6 C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 7 P. L. He, X. Y. Yu, and X. W. (David) Lou, Angew. Chem., 2017, 129, 3955-3958.
- 8 T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu, J.
 Am. Chem. Soc., 2017, 139, 8320-8328.
- 9 F. Yang, P. Zhao, X. Hua, W. Luo, G. Cheng, W. Xing, S. Chen, J. Mater. Chem. A, 2016, 4, 16057-16063.
- 10 W. Peng, G. Zheng, Y. Wang, S. Cao, Z. Ji, Y. Huan, M. Zou, X. Yan, Int. J. Hydrogen Energy, 2019, 44, 19782-19791.
- 11 Z. Liu, T. Ouyang, Y. Ye, C. Wu, K. Xiao, Angew. Chem. Int. Ed., 2019, 58, 4923-4928.
- 12 P. Guo, J. Wu, X. B. Li, J. Luo, W. M. Lau, H. Liu, X. L. Sun, L. M. Liu, Nano Energy, 2018, 96, 96-104.
- 13 K. Xu, H. Ding, M. X. Zhang, M. Chen, Z. K. Hao, L. D. Zhang, C. Z. Wu, Y. Xie, Adv. Mater., 2017, **29**, 1606980.

27

14 W. T. Zhao, X. Q. Lu, M. Selvaraj, W. Wei, Z. F. Jiang, N. Ullah, J. Liu and J. M. Xie. Nanoscale, 2018, **10**, 9698-9706.

15 Y. C. Hao, Y. Q. Xu, W. Liu and X. M. Sun, Mater. Horiz., 2018, 5, 108-115.

16 C. Lin, Z. F. Gao, J. H. Yang, B. Liu, J. Jin, J. Mater. Chem. A, 2018, 6, 6387-6392.

17 X. H. Gao, H. X. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. W. Zhang, C. D. Liang, Z. Lin, Angew. Chem. Int. Ed., 2016, **55**, 6290-6294.

18 X. G. Wang, W. Li, D. H. Xiong, D. Y. Petrovykh, L. F. Liu, Adv. Funct. Mater., 2016, 26, 4067-4077.

19 Y. Q. Wang, B. H. Zhang, W. Pan, H. Y. Ma, J. T. Zhang, ChemSusChem, 2017, 10, 4170-4177.

20 J. H. Wang, D. N. Liu, H. Huang, N. Yang, B. Yu, M. Wen, X. Wang, P. K. Chu, X. F. Yu. Angew.Chem.Int. Ed., 2018, **57**, 2630-2634.

21 B. Bayatsarmadi, Y. Zheng, Y. Tang, M. Jaroniec, S.Z. Qiao, Small, 2016, 12, 3703-3711.