Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Plasmon-Enhanced Unidirectional Charge Transfer for Efficient Solar

Water Oxidation

Chuanping Li^{a,b,*}, Shuoren Li^a, Chen Xu^{b,c}, Kongshuo Ma^{b,c}

*Corresponding author: licp@ahpu.edu.cn (Chuanping Li)

Fig. S1 SEM images of (a) CC@TiO₂, (b) CC@TiO₂@SrTiO₃, (c-d) CC@TiO₂@SrTiO₃-Au with photochemical reduction time of 5 min and 15 min, respectively.

Fig. S2 Enlarged TEM image of CC@TiO₂@SrTiO₃-Au.

Fig. S3 The size distribution of deposited AuNPs. The standard deviation is 2.67 nm.

Fig. S4 XRD spectra of CC@TiO₂ (black), CC@TiO₂@SrTiO₃(red), and CC@TiO₂@SrTiO₃-Au (green).

Fig. S5 Full-scan XPS spectra of the samples.

Fig. S6 UV-Vis spectra of CC@TiO₂@SrTiO₃ and CC@TiO₂@SrTiO₃-Au.

Fig. S8 LSV of CC@TiO₂@SrTiO₃ with different hydrothermal time.

Fig. S9 LSV of CC@TiO₂@SrTiO₃-Au with different photochemical reduction time.

Fig. S10 SEM image of $TiO_2@SrTiO_3$ -Au nanotubes. Inset: Digital photograph of nanotubes.

Fig. S11 (a) LSV of CC@TiO₂@SrTiO₃-Au and TiO₂@SrTiO₃-Au nanotubes. (b) enlarged LSV plots of TiO₂@SrTiO₃-Au nanotubes under the illumination of light and in dark.

Fig. S12 Photocurrent densities of CC@TiO₂@SrTiO₃-Au under the illumination of different wavelengths.

Fig. S13 Extinction spectra of 12 nm AuNPs.

Fig. S17 Band structure diagram and charge transfer channels of TiO₂@SrTiO₃ hetero-nanostructures.

Fig. S18 Cross-section simulation model of (a) CC@TiO $_2$ and (b) disordered TiO $_2$ nanoparticles.

Table S1 Comparison of OER performance of PEC catalysts based on TiO_2 under light irradiation.

	Materials	Current Density (mA/cm ²)	Electrolyte	Light intensity (mW/cm ²)	Reference
1	Fe ₂ TiO ₅ -TiO ₂ Nanocages	~0.35 (1.23 V vs RHE)	1.0 M NaOH	100	Angew. Chem., Int. Ed. 2020, 59, 1-6
2	Carbon Nitride/TiO ₂	≈0.122 (1.23 V vs RHE)	0.5 M Na ₂ SO ₄	100	<i>Chem. Eng. J.</i> 2020, 396, 125267
3	QDs/TiO ₂ -Au:CNTs	16.10 ± 0.10 (1.0 V vs RHE)	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃	100	Adv. Sci. 2020, 2001864
4	SrTiO ₃ /TiO ₂ /Au	2.11 (1.23 V vs RHE)	1.0 M NaOH	100	Nano Energy 2019, 57 542–548
5	CQDs/A/R-TiO ₂	2.76 (1.23 V vs RHE)	0.2 M Na ₂ SO ₄	100	Appl. Catal. B 2020, 269 118776
6	C/N-TiO ₂ NW Arrays	0.76 (1.80 V vs RHE)	1.0 M NaOH	100	<i>Adv. Energy Mater.</i> 2018, 1800165
7	CC@TiO ₂ @SrTiO ₃ -Au	23.56 (1.23 V vs RHE)	1.0 M KOH	100	This work

	Maximum Optical Conversion Efficiency	Reference
1	0.94% (0.61 V vs. RHE)	Chem. Eng. J. 2020, 385, 123878
2	0.07% (1.05 V vs RHE)	Chem. Eng. J. 2020, 379, 122256
3	0.40 % (0.97 V vs RHE)	Appl. Catal. B 2020, 277, 119197
4	14.1% (0.4 V vs Ag/AgCl)	Adv. Energy Mater. 2020, 2000772
5	0.56% (0.98 V vs RHE)	ACS Appl. Mater. Interfaces 2020, 12, 30304
6	7.73% (0.76 V vs RHE)	This work

Table S2 Comparison of the maximum optical conversion efficiencies of commonlyused PEC catalysts.