
Supporting Information for

Construction of PtSe₂/Ge heterostructure-based short-wavelength infrared photodetectors array for image sensing and optical communication applications

Yu Lu,¹ Yue Wang,¹ Chenhao Xu,¹ Chao Xie,^{1,2} * Wenbin Li,¹ Jie Ding,¹ Wanying Zhou,¹ Zipeng Qin,¹ Xinyi Shen¹ and Linbao Luo¹*

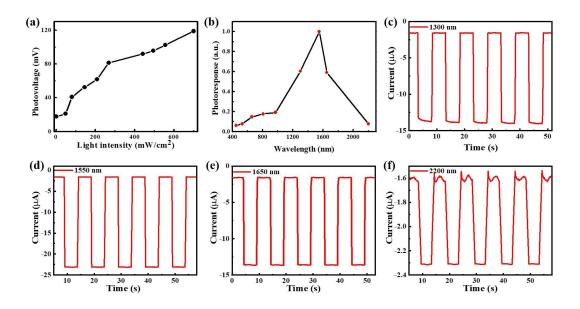
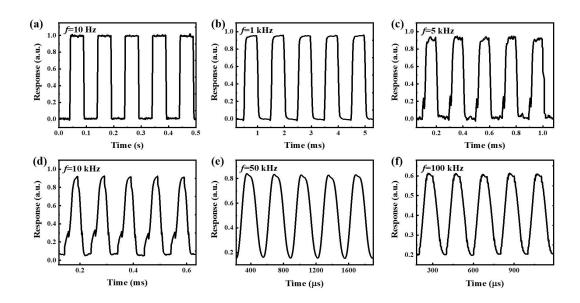


Fig. S1. The AFM image of the multilayered PtSe2 film atop a Ge substrate. The inset in it shows the height profile of the film.


¹ School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, P. R. China

² School of Electronics and Information Engineering, Anhui University, Hefei, Anhui 230601, P. R. China

^{*} Email: chaoxie@ahu.edu.cn, luolb@hfut.edu.cn

Fig. S2. (a) The photovoltage of the device as a function of incident light intensity. (b) The normalized photoresponse as a function of incident light wavelength. The time-dependent photoresponse of the device under SWIR illumination with wavelengths of (c) 1300 nm, (d) 1550 nm, (e) 1650 nm and (f) 2200 nm.

Fig. S3. The photoresponse of the device under 1550 nm illumination with different modulating frequencies at (a) 10 Hz, (b) 1 kHz, (c) 5 kHz, (d) 10 kHz, (e) 50 kHz and (f) 100 kHz.

Fig. S4. (a) Schematic diagram of the photodetectors array connected in parallel. (b) *I-V* curves of the photodetectors array connected in parallel with different unit numbers under 1550 nm light irradiation.

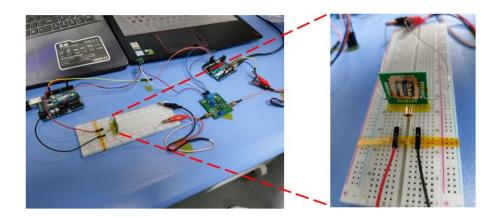


Fig. S5. The digital photography of the SWIR optical communication system.