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1. Tip calibration 
Supplementary Figure 1A and B shows SEM images of the Nanothermal probes used in this work. A tip 
radius of 100 nm was estimated. As it can be seen, the probe consists in a thin film 𝑁𝑖𝐶𝑟/𝑃𝑑 resistor 
which acts both as heater and thermometer. The fabrication process of these kind of tips results in non-
negligible oscillation in characteristics among each individual item, with resistance oscillations of about 
10% and slightly different thermal behaviour (due to changes in the different layer thicknesses). 
Therefore, every new tip used needs to be calibrated accordingly prior to its use. On the other hand, once 
calibrated, these tips are way bulkier than standard topography AFM probes, and each tip used have 
shown no significance variation after several experiments unless they get damaged somehow.  

The probe signal is measured connecting the tip resistor into a Wheatstone bridge (Supplementary Figure 
1C) once calibrated. The Wheatstone bridge signal 𝑉𝑆𝑇ℎ𝑀 is linearly proportional to the current 𝐼𝑃𝑟𝑜𝑏𝑒 and 
the tip temperature 𝑇𝑃𝑟𝑜𝑏𝑒 (Eq. S. 1) [1]. 

𝑉𝑆𝑇ℎ𝑀

𝐼𝑃𝑟𝑜𝑏𝑒
= 𝐶1 · 𝑇𝑃𝑟𝑜𝑏𝑒 + 𝐶2 Eq. S. 1 

This way, accordingly to Supplementary Figure 2, tip calibration was done prior to the nanostructure 

analysis in 4 steps. 

i) First, with the tip suspended away from substrate and disconnected of the Wheatstone bridge, 

an I-V curve was performed over the tip to accurately determine its resistance (𝑅𝑃𝑟𝑜𝑏𝑒  =

 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑/𝐼𝑃𝑟𝑜𝑏𝑒) change as a function of the current due to its self/heating (Supplementary 

Figure 2A). The curve also serves to identify the minimum current in which the self-heating effects 

starts to take place. This value is crucial in the next steps because of the high difficulty of adjusting 

the Wheatstone bridge with too small currents. With 𝑅𝑝𝑟𝑜𝑏𝑒(𝐼𝑝𝑟𝑜𝑏𝑒) curve, the heat dissipated 

in the tip �̇�𝑃𝑟𝑜𝑏𝑒  can be simply calculated as �̇�𝑃𝑟𝑜𝑏𝑒 =  𝐼𝑃𝑟𝑜𝑏𝑒
2 𝑅𝑃𝑟𝑜𝑏𝑒. 

ii) Secondly, the tip is connected to the Wheatstone bridge and with a current unable to produce 

self/heating the bridge is equilibrated, i.e. the variable resistor is changed until 𝑉𝑆𝑇ℎ𝑀 is set to 0. 

A value of 𝐼𝑃𝑟𝑜𝑏𝑒 = 0.1 mA was determined to be a good trade-off between high enough current 

for a precise 𝑉𝑆𝑇ℎ𝑀 measurement and still unable to produce self-heating. 
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Supplementary Figure 1. A) SEM image of the SiO2 – Pd SThM NanoThermal probe used. B) Inset of the 
probe tip, the tip radius was calculated to be ~100 𝑛𝑚. C) Schematics of the Wheatstone bridge 
employed to control the current set into the SThM resistor 𝐼𝑝𝑟𝑜𝑏𝑒. 
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Supplementary Figure 2. A) Resistance of the tip resistor as a function of the forced current imposed 
when performing an I-V curve. B)  𝑽𝑺𝑻𝒉𝑴 𝑰𝑷𝒓𝒐𝒃𝒆⁄  as a function of the tip temperature for 𝑰𝑷𝒓𝒐𝒃𝒆 set to 
𝟎. 𝟏 𝒎𝑨 C) 𝑽𝑺𝑻𝒉𝑴 as a function of 𝑰𝑷𝒓𝒐𝒃𝒆 in air (far away from sample) D) Temperature as a function of 

A) B) 



𝑰𝑷𝒓𝒐𝒃𝒆 calibration curve obtained by combinining B) and C). For 𝑰𝑷𝒓𝒐𝒃𝒆 < 𝟎. 𝟓 𝒎𝑨 the error is 
important. 

iii) Then, with the tip connected to the Wheatstone bridge, the values of constants C1 and C2 of Eq. 

S. 1 were calibrated by putting the tip in contact with a heater at known temperature (Park’s 

Universal Liquid Cell temperature controller) and making several measurements of 𝑉𝑆𝑇ℎ𝑀 at fixed 

𝐼𝑃𝑟𝑜𝑏𝑒 (Supplementary Figure 2B). Again, a value of 𝐼𝑃𝑟𝑜𝑏𝑒 = 0.1 mA was used. 

iv) Later, a self-heating curve with the tip connected to the Wheatstone bridge was performed by 

forcing 𝐼𝑃𝑟𝑜𝑏𝑒 up to 1.6 mA, enough to produce noticeable changes in tip resistance 

(Supplementary Figure 2C). This curve allows to relate the tip resistance change due to the self-

heating directly with the whetstone bridge voltage 𝑉𝑆𝑇ℎ𝑀. Removing the offset 𝑉𝑆𝑇ℎ𝑀 voltage at 

𝐼𝑃𝑟𝑜𝑏𝑒 = 0 helps removing artefacts produced by the division of a finite quantity by zero at low 

currents. However, it is worth noticing how the 𝑉𝑆𝑇ℎ𝑀 might still slightly vary as current changes 

due to a non-perfect variable resistor adjustment in step ii) at such low currents (in absence of 

self-heating). Yet, it is quickly masked by the self-heating contribution (𝐼𝑃𝑟𝑜𝑏𝑒 > 0.8 𝑚𝐴) where 

the measurements take place.  

v) Finally, combining the values of K1 and K2 found in Supplementary Figure 2B with the 𝑉𝑆𝑇ℎ𝑀 signal 

as a function of 𝐼𝑃𝑟𝑜𝑏𝑒 shown at Supplementary Figure 2C, a relationship between the tip 

temperature T as a function of 𝐼𝑃𝑟𝑜𝑏𝑒 can be obtained. The result is presented at Supplementary 

Figure 2D, which leads to straight calculation of 𝛥𝑇 =  𝑇𝑃𝑟𝑜𝑏𝑒 − 𝑇∞ (with 𝑇∞ being 25 °C). Again, 

an artefact of temperature changes at lower 𝐼𝑃𝑟𝑜𝑏𝑒 might appear as a consequence of the non-

perfect variable resistor adjustment but the effects becomes negligible with the self-heating 

contribution (𝐼𝑃𝑟𝑜𝑏𝑒 > 0.8 𝑚𝐴). 

2. Conductance step extraction from the current curve: 
Supplementary Figure 3 shows a raw current and force curve versus tip height used to derive the 

conductance change in the tip using the expression 𝐺 = �̇�𝑃𝑟𝑜𝑏𝑒 Δ𝑇⁄ = (𝐼𝑃𝑟𝑜𝑏𝑒
2𝑅𝑃𝑟𝑜𝑏𝑒) Δ𝑇⁄ . The force 

curve inflexion point is then used to offset the tip position curve to 𝑧 = 0 at this specific point. Once 𝐺 is 

calculated as a function of the corrected tip position, a stepwise polynomial fit before and after the 

contact jump at 𝑧 = 0 allows to easily fit 𝛿𝐺. 
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Supplementary Figure 3. Raw current curve as a function of the tip position (dots) used to compute the 

tip conductance as 𝐺 = �̇�𝑃𝑟𝑜𝑏𝑒 Δ𝑇⁄ = (𝐼𝑃𝑟𝑜𝑏𝑒
2𝑅𝑃𝑟𝑜𝑏𝑒) Δ𝑇⁄ . The red line represents the result of a 

stepwise polynomial fit used to compute 𝛿𝐺. 

It is worth noticing that since 𝐺 and 𝛿𝐺 measurements are derived from another measured variables 

(current and temperatures). Specifically, ambient temperature stability is of major importance to ensure 

a proper assessment of Δ𝑇 and subsequently of 𝐺. Therefore, measurements should be performed in a 

properly isolated room with no temperature fluctuations. Moreover, it is recommended to actively 

stabilize the substrate temperature in order to better ensure this issue. A Peltier module as the one used 



in this work (see experimental section) would be desirable, as it can properly compensate for both 

increasing or decreasing small ambient temperature fluctuations in the surrounding of the microscope.  

3. Validation of assumptions: 
During the description of the problem, some strong assumptions neglecting terms of the complete system 

thermal model has been made. This section aims to validate such assumptions and the applicability of Eq. 

1 of the article, copied here for brevity:  

δG = 𝐺(𝑝𝑜𝑠𝑡) − 𝐺(𝑝𝑟𝑒) =
1

𝑅𝐶 + 𝑅𝑁𝑆(𝑦)
 Eq. 1 

3.1. Full contact model including meniscus and solid-air contact conductance terms: 

Supplementary Figure 4 top row - i.e. A), B) and C) - schematizes the conductances that would participate 

in the total tip conductance 𝐺 ≡ �̇�𝑃𝑟𝑜𝑏𝑒/Δ𝑇 if the measurement was performed in vacuum, in which only 

solid conduction takes place. Supplementary Figure 4 bottom row - i.e. D), E) and F) - includes additional 

terms that are present in atmospheric conditions. Supplementary Figure 4 E) and F) includes additional 

thermal paths in series/parallel with the ones present in the vacuum scheme, which were omitted in the 

simplified version shown at the body of the article for the sake of clarity. 

 
Supplementary Figure 4. Detailed schemes of the equivalent thermal circuits of the system in vacuum 
A) - C) and air D) - F). First images A) and D) shows the circuit when the tip is away from the sample. 
Only cantilever loses are present in the case of vacuum (A). In air, conduction loses to air also take 
place, and will increase as z decreases since the probe-substrate distance is reduced. Second images B) 
and E) show the circuit immediately before the contact event. There are no changes in the vacuum 
scheme (B), however, for the case of air (E), a finite amount of heat flows through the air gap between 
tip and NS. Finally, after the contact C) and E) the NS conductance and contact resistances are added in 
parallel. In the case of air (E), a meniscus might be formed, creating a parallel path for heat evacuation 
to towards the NS.  

 

First, just before the tip contacting the NS, the air gap between tip and the underlying portion of NS is 

very small leading to a very high conductance through air, termed 𝑅𝑆𝐴𝑆 in the scheme. If one were to 

consider only Fourier’s law for the determination, 𝑅𝑆𝐴𝑆 would trend to 0, because the gap just before 

contacting is virtually null. However, in a real experiment the solid (tip) – air (gap) – solid (NS) contact 

thermal resistance exists, hence the nomenclature “SAS”. It is mostly related to the scattering effect of 
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gas molecules in the two surfaces. Therefore, 𝑅𝑆𝐴𝑆 = 1/𝐺𝑆𝐴𝑆 has a finite value that enables the path 

through the NS already before contact whose relevance depends on its relative magnitude. 

On the other hand, and as already introduced in the article, after contact a water meniscus is formed. In 

this way, the tip-NS contact conductance can be split into two parallel contributions, related to direct 

solid-solid contact (𝐺𝑆𝑆 = 1 𝑅𝑆𝑆⁄ ) and to the water meniscus (𝐺𝑊 = 1 𝑅𝑊⁄ ). Any remaining contribution 

from the air can be neglected because: (i) the droplet is in the region of the former small gap occupying 

the former 𝐺𝑆𝐴𝑆 channel; and (ii): the rest of possible parallel paths through air to the NS are already at 

distance larger than the mean free path and subject to scattering events, leading to a decreased 

conductance. 

The magnitudes of 𝐺𝑠𝑠 and 𝐺𝑤 contact conductances have been estimated only for flat substrates and are 

both in the range 0.1 – 0.2 µW/K [2,3]. In the case of contacting a small size object as NW – or an even 

smaller rough appendix of a NW – one might expect the direct solid-solid conductance decrease, as 𝐺𝑆𝑆 ∝ 

contact area. However, the size of the meniscus (on the order of 50 – 100 nm [4]) is not expected to 

decrease. The value of 𝐺𝑊 might increase instead as the droplet might end up surrounding the whole NS 

– and contacting all the outer rough structures, if present – leading to an increased contact area. Thus, 

independently of the relative weight of each conductance, the combined contact conductance after 

contact 𝐺𝐶  is at least 0.1 µW/K (or equivalently 𝑅𝐶 < 10 K/µW). 

Hence, one can re-write Eq. 1 with the conductances of the system before and after the contact (Eq. S. 2 

and Eq. S. 3 respectively) more rigorously including all terms as: 

1

𝑅𝑝𝑟𝑒

= 𝐺𝑝𝑟𝑒 =
1

𝑅𝑆𝐴𝑆 + 𝑅𝑁𝑆

+
1

𝑅𝑡𝑖𝑝

+
1

𝑅∞

 Eq. S. 2 

1

𝑅𝑝𝑜𝑠𝑡
= 𝐺𝑝𝑟𝑒 =

1

𝑅𝐶 + 𝑅𝑁𝑆
+

1

𝑅𝑡𝑖𝑝
+

1

𝑅∞
  Eq. S. 3 

In this way, the conductance change produced in the contact event can be expressed as the difference 

between the previously defined conductances: 

1

𝑅𝑝𝑜𝑠𝑡
−

1

𝑅𝑝𝑟𝑒
= 𝛿𝐺𝑠

 =
1

𝑅𝐶 + 𝑅𝑁𝑆
−

1

𝑅𝑆𝐴𝑆 + 𝑅𝑁𝑆
 Eq. S. 4 

𝛿𝐺𝑠
 =

𝑅𝑆𝐴𝑆 − 𝑅𝐶

𝑅𝑁𝑆
2 + 𝑅𝑁𝑆(𝑅𝐶 + 𝑅𝑆𝐴𝑆) + (

1
𝑅𝐶

+
1

𝑅𝑆𝐴𝑆
)

−1

𝑅𝑆𝐴𝑆

 
Eq. S. 5 

 

3.2. Effects of extra terms for the validity of the assumption: 

Eq. 1 above – central for the method proposed in the article – is making use of the implicit assumption 

𝑅𝐶  ~ 𝑅𝑁𝑆 ≪ 𝑅𝑆𝐴𝑆, and then the contact resistance effectively substitutes 𝑅𝑆𝐴𝑆 since 𝐺𝐶 + 𝑅𝑆𝐴𝑆  ≅ 𝐺𝐶. If 

we simplify Eq. S. 5 with this assumption, we get the expression used in Eq. 5. 

𝛿𝐺𝑠
 ≅

𝑅𝑆𝐴𝑆 − 𝑅𝐶

𝑅𝑁𝑆
2 + 𝑅𝑁𝑆(𝑅𝐶 + 𝑅𝑆𝐴𝑆) + 𝑅𝐶𝑅𝑆𝐴𝑆

≅
𝑅𝑁𝐶

𝑅𝑁𝑆𝑅𝑆𝐴𝑆 + 𝑅𝐶𝑅𝑆𝐴𝑆
≅

1

𝑅𝑁𝑆 + 𝑅𝐶
 Eq. S. 6 

In this way, an assumed 𝑅𝑁𝑆 is deduced from a 𝛿𝐺𝑠 under this approximation: 

𝑅𝑁𝑆
𝐴𝑠𝑠𝑢𝑚 =

1

𝛿𝐺𝑠
− 𝑅𝐶  Eq. S. 7 

However, in order to assess whether or not this assumption (𝑅𝐶  ~ 𝑅𝑁𝑆 ≪ 𝑅𝑆𝐴𝑆) is valid, the value of 𝑅𝑆𝐴𝑆 

must be estimated and used to verify that the ratio 𝑅𝑆𝐴𝑆 𝑅𝐶⁄  obtained in this work is high enough to hold 

the approximations. If the simple vacuum 𝑅𝑁𝑆 model is used (Eq. 3 i.e. when ℎ =  0), the 𝑅𝑁𝑆 can be 

described as: 



𝑅𝑁𝑆(𝑦) = 𝑓(𝑦)𝑅0 = 𝑓(𝑦)
𝐿

𝜅𝐴𝐶
 Eq. S. 8 

Where 𝑓(𝑦) = [1 4 − (𝑦 𝐿⁄ )2⁄ ]. Thus, from the values of 𝑅𝑆𝐴𝑆, 𝑅𝐶  and the intrinsic properties of the NS 

(𝑅0), the real δ𝐺𝑠
  values that would ideally be measured can be estimated at a position 𝑥. 

𝛿𝐺𝑠
 (𝑦) =

𝑅𝑆𝐴𝑆 − 𝑅𝐶

(𝑓(𝑦)𝑅0)2 + (𝑓(𝑦)𝑅0)(𝑅𝐶 + 𝑅𝑆𝐴𝑆) + 𝑅𝐶𝑅𝑆𝐴𝑆
 Eq. S. 9 

On the other hand, if a conductance change 𝛿𝐺𝑠
  is measured at the position 𝑥, a thermal conductivity will 

be inferred with certain error if Eq. S. 6 is used instead of using the full model (Eq. S. 5).  

𝜅𝑖𝑛𝑓  = 𝑓(𝑦)
𝐿

𝑅𝑁𝑆
𝐴𝑠𝑠𝑢𝑚𝑒𝑑𝐴𝐶

= 𝑓(𝑦)
𝐿

(
1

𝛿𝐺𝑠
− 𝑅𝐶) 𝐴𝐶

= 𝑓(𝑥)
𝑅0

𝑅𝑒𝑎𝑙 𝜅𝑅𝑒𝑎𝑙

(
1

𝛿𝐺𝑠
− 𝑅𝐶)

 Eq. S. 10 

The error committed in the evaluating of the thermal conductivity 𝜅𝑖𝑛𝑓 can be assessed with the ratio 

𝜅𝐼𝑛𝑓𝑒𝑟 𝜅𝑅𝑒𝑎𝑙⁄  (Eq. S. 11). This can be studied as a function of the real conductance changes which can 

subsequently be deduced using Eq. S. 9 as a function of the ratio 𝑅𝑆𝐴𝑆 𝑅𝐶⁄  and the intrinsic properties of 

the NS. 

𝜅𝑅𝑒𝑎𝑙

𝜅𝐼𝑛𝑓𝑒𝑟
=

𝑓(𝑦)𝑅0
𝑅𝑒𝑎𝑙

(
1

𝛿𝐺𝑠(𝑦)
− 𝑅𝐶)

 Eq. S. 11 

Supplementary Figure 5 shows the evolution of this ratio, using a reasonable value of 𝑅𝐶  of 4.6 𝐾/𝜇𝑊; 

𝜅𝑅𝑒𝑎𝑙 = 20 𝑊/𝑚 · 𝐾; 𝐿 = 10 𝜇𝑚 and 𝜙 = 100 𝑛𝑚. As it can be appreciated, the assumption starts to be 

valid for ratios higher than 102 - 103. 
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Supplementary Figure 5. Ratio of the inferred thermal conductivity respect to the real one when using 
the assumption 𝑹𝑪 ~ 𝑹𝑵𝑺 ≪ 𝑹𝑺𝑨𝑺 as a function of the ratio between the non-contact resistance 𝑹𝑺𝑨𝑺 
and the contact resistance 𝑹𝑪 in logarithmic scale at 𝒚 = 𝟎.  

By following the work of Giri [5], in the case of air as transfer fluid, assuming no influence of the solid 

(because of its relatively high thermal conductivity compared with air) and a tip radius of 50 𝑛𝑚, a value 

for 𝑅𝑆𝐴𝑆 immediately before the contact of ~530 𝐾/𝜇𝑊 is evaluated. Since 𝑅𝑐 < 10 K/µW then the ratio 

𝑅𝑆𝐴𝑆 𝑅𝐶⁄ > 50.  Thus, according to Supplementary Figure 5, a ratio of 𝜅𝐼𝑛𝑓𝑒𝑟 𝜅𝑅𝑒𝑎𝑙⁄ = 0.97 is obtained, 

confirming the validity of our assumption. 



4. Thermal resistance nanostructure model: 

4.1. Temperature profile along a 1D nanostructure segment: 

As commented in Section 3.2., the temperature profile along the NS is derived from the solution of the 

heat equation with the specific boundary conditions of the problem. This section aims to clarify the 

process. 

 
Supplementary Figure 6. Schematic of the differential NS section considered. 

Let’s consider a differential section of NS in steady state (
𝜕𝑇

𝜕𝑡
= 0) where there is conduction along the 

circular cross section (𝑆𝑥(𝑥) =
𝜋

4
𝜙(𝑥)2) and convection cooling through the differential area exposed to 

air (𝑑𝑆𝑐𝑣(𝑥) = 𝜋𝜙(𝑥)𝑑𝑥) as shown in Supplementary Figure 6. A heat flow balance leads to: 

−
𝜕�̇�𝜅(𝑥)

𝜕𝑥
=

𝜕�̇�𝑐𝑣(𝑥)

𝜕𝑥
 Eq. S. 12 

The conduction heat �̇�𝜅(𝑥) is defined using Fourier’s law. Assuming a constant diameter along the NS: 

�̇�𝜅(𝑥) = −𝜅(𝑥) 𝑆𝑥(𝑥)
𝜕𝑇(𝑥)

𝜕𝑥
 = −𝜅 𝜋

𝜙2

4

𝜕𝑇(𝑥)

𝜕𝑥
  Eq. S. 13 

The cooling term is defined using Newton’s cooling law. Assuming constant convective coefficient ℎ and 

constant section along the NSs: 

𝜕�̇�𝑐𝑣(𝑥)

𝜕𝑥
= ℎ 𝑑𝑆𝑐𝑣(𝑥)(𝑇(𝑥) − 𝑇∞) = ℎ 𝜋𝜙 (𝑇(𝑥) − 𝑇∞) Eq. S. 14 

Substituting in Eq. S. 12 and rearranging terms, the ordinary differential equation (ODE) of the model is 

set: 

𝜅 𝜋
𝜙2

4
 (

𝜕2𝑇(𝑥)

𝜕𝑥2 ) = ℎ 𝜋𝜙 (𝑇(𝑥) − 𝑇∞) 

 

Eq. S. 15 
 

(
𝜕2𝑇(𝑥)

𝜕𝑥2 ) −  
4 ℎ

𝜅 𝜙
  (𝑇(𝑥) − 𝑇∞) = 0 Eq. S. 16 

Here a double variable change to 𝑚 and 𝜃 eases the solution of the differential equation: 

𝜕2𝜃(𝑥)

𝜕𝑥2
− 𝑚2𝜃(𝑥) = 0      {

𝜃(𝑥) = 𝑇(𝑥) − 𝑇∞

𝑚2 =
4 ℎ

𝜅 𝜙

 

 

Eq. S. 17 



The generic solution of the ODE is of the form 𝜃(𝑥) = 𝐶1𝑒−𝑚𝑥 − 𝐶2𝑒𝑚𝑥 therefore two boundary 

conditions are needed to define the specific solution: 

a. At the SThM tip position, the temperature is defined as 𝑇0.  

b. The temperature at the NS end is equal to the bulk, which is assumed to be in thermal equilibrium 

with the ambient air. 

Thus:   

{
 𝑇(𝑥 = 0) = 𝑇0

 𝑇(𝑥 = 𝑙) = 𝑇∞
→  {

 𝜃(𝑥 = 0) = 𝑇0 − 𝑇∞ =  𝜃0

𝜃(𝑥 = 𝑙) = 𝑇∞ − 𝑇∞ =  0
 Eq. S. 18 

Substituting into the general solution leads to the following terms for both constants: 

𝐶1 =   
𝑇0𝑒2𝑚𝑙

𝑒2𝑚𝑙 − 1
                   𝐶2 = −

𝑇0𝑒2𝑚𝑙

𝑒2𝑚𝑙 − 1
 Eq. S. 19 

Introducing the constant values in the general solution yields the following expression.  

𝜃(𝑥) =
𝜃0𝑒−𝑚𝑥

𝑒2𝑚𝑙 − 1
(𝑒2𝑚𝑙 − 𝑒2𝑚𝑥) Eq. S. 20 

Alternatively, the expression can be written as a function of the temperature and the tip position 𝑦 where 

the the ± sign is selected depending the section (left or right chosen): 

𝑇(𝑥) =
(𝑇0 − 𝑇∞)𝑒−𝑚𝑥

𝑒
2𝑚(

𝐿
2

±𝑦)
− 1

(𝑒
2𝑚(

L
2

±𝑦)
− 𝑒2𝑚𝑥) Eq. S. 21 

As it can be seen in its dimensionless representation of Supplementary Figure 7 when 𝜅 = 15 𝑊/𝑚𝐾 

and 𝜙 = 90 𝑛𝑚 and 𝐿 = 8.9 𝜇𝑚 and ℎ ranges from 0 to 10 𝑘𝑊/𝑚2𝐾. When the product 𝑚𝐿 → 0 the 

exponential functions 𝑒𝑥 → 1 + 𝑥 (Taylor expansion near 0) and thus after applying the limit, Eq. S. 20 

reduces to the linear profile expected for conduction through a non-cooled solid (termed as “only 

conduction” in the plots).  

𝑇(𝑥) =
(𝑇0 − 𝑇∞)(1 − 𝑚𝑥)

(1 + 2𝑚𝐿 − 1)
(1 + 2𝑚𝑙 − 1 − 2𝑚𝑥) = (1 −

𝑥

𝐿
) (𝑇0 − 𝑇∞) Eq. S. 22 

For values of the 𝑚𝐿 product lower than 0.5 the fully conduction approximation is completely valid. 
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Supplementary Figure 7. Temperature profiles as a function of the longitudinal axis several 

combinations of 𝑚 · 𝐿. A) SThM tip cantered (𝑦 = 0). B) Tip at 𝑦 =  3/8 𝐿. 

4.2. 1D NS thermal resistance: 

The heat flowing from the tip to a segment of air-cooled NS can be obtained using Fourier’s law at the 

boundary 𝑥 = 0. 

�̇�(𝑥 = 0) = −𝜅
𝜋𝜙2

4
 
𝜕𝑇(𝑥)

𝜕𝑥
|

𝑥=0

= −𝜅
𝜋𝜙2

4
 
𝜕𝜃(𝑥)

𝜕𝑥
|

𝑥=0

 Eq. S. 23 

Derivating Eq. S. 20 and assessing at 𝑥 = 0: 

𝜕𝜃(𝑥)

𝜕𝑥
|

𝑥=0

= [
𝑚𝜃0𝑒−𝑚𝑥

1 − 𝑒2𝑚𝑙𝑖
(𝑒2𝑚𝑙𝑖 − 𝑒2𝑚𝑥) +

2𝑚𝜃0𝑒𝑚𝑥

1 − 𝑒2𝑚𝑙𝑖
]

𝑥=0
= 𝜃0𝑚 [

2

1 − 𝑒2𝑚𝑙𝑖
− 1] Eq. S. 24 

Using the last two equations one can obtain the heat that flows and conductance from the tip (at 𝑇0) to a 

segment of air-cooled NS of length 𝑙𝑖 connected to the heat sink (at 𝑇∞), with 𝜃0 = 𝑇0 − 𝑇∞, provided 

that the bulk-NS contact thermal resistance is negligible. For the NW considered in this work, our previous 

studies have shown that the epitaxial growth allows such assumption (see experimental section 5 in the 

main article). Other top-down approaches such as metal assisted chemical etching (MACE) [6–9] or 

lithography [10–13] are suited for this assumption as well. Therefore, the expression remains: 

�̇�𝑁𝑆
𝑙𝑖 = −𝜅

𝜋𝜙2

4
𝑚𝜃0 [

2

1 − 𝑒2𝑚𝑙𝑖
− 1] = 𝐺𝑁𝑊

𝑙𝑖 𝜃0 Eq. S. 25 

The total heat flowing from the tip trough the NS is obtained by considering the contributions of both 

branches (left with 𝑙𝐿 and right with 𝑙𝑅, see Figure 2 in the main article): 

�̇�𝑁𝑆 = �̇�𝑁𝑆
𝑙𝐿 +  �̇�𝑁𝑆

𝑙𝑅 = 𝜃0[𝐺𝑁𝑆
𝑙𝐿 + 𝐺𝑁𝑆

𝑙𝑅 ] 

 

Eq. S. 26 
 

�̇�𝑁𝑆 = 𝜅
𝜋𝜙2

4
2𝑚 [1 −

1

1 − 𝑒2𝑚𝑙1
−

1

1 − 𝑒2𝑚𝑙2
] 𝜃0 Eq. S. 27 

Or alternatively it can be expressed as a function of the tip position 𝑦, since 𝑙1 = 𝐿 2⁄ − 𝑦 and 𝑙2 = 𝐿 2⁄ +

𝑦. 

�̇�𝑁𝑆 = 𝜅
𝜋𝜙2

4
2𝑚 (1 −

1

1 − 𝑒
𝑚(𝐿−

𝑦
2

)
−

1

1 − 𝑒
𝑚(𝐿+

𝑦
2

)
) 𝜃0 Eq. S. 28 

The thermal conductance 𝐺 and thermal resistance 𝑅 = 𝜃0/�̇�𝑁𝑆 are readily obtained from Eq. S. 28. 



𝐺 = 𝜅
𝜋𝜙2

4
2𝑚 (1 −

1

1 − 𝑒
𝑚(𝐿−

𝑦
2

)
−

1

1 − 𝑒
𝑚(𝐿+

𝑦
2

)
) Eq. S22 

𝑅 =
4𝐿

𝜋𝜙2𝜅
× {2𝑚𝐿 (1 −

1

1 − 𝑒
2𝑚(𝐿−

𝑦
2

)
−

1

1 − 𝑒
𝑚(𝐿+

𝑦
2

)
)}

−1

 Eq. S23 

Analogously to the procedure employed in Supplementary section 4.1, when there is no air-cooling (ℎ →

0) one can expand the exponentials 𝑒𝑥 to 1 + 𝑥 and take the limit 𝑚𝐿 → 0, which will simplify the term 

in brackets in Eq. S. 2, leading to: 

𝑅𝑣𝑎𝑐 =
4𝐿

𝜋𝜙2𝜅
× [

1

4
− (

𝑦

𝐿
)

2

] Eq. S24 

Supplementary Figure 8 shows an example of the profiles of 𝑅. Higher values of ℎ leads to flatter profiles. 

For 𝐿 product values lower than 0.5, the approximation of Eq. S. 3 (termed as “only conduction” in the 

plot) is valid. 
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Supplementary Figure 8. Estimation of a NS thermal resistance longitudinal profile as a function of the 
SThM tip position and the 𝑚𝐿 product for 𝜅 = 15 𝑊/𝑚𝐾 and 𝜙 = 90 𝑛𝑚 and 𝐿 = 8.9 𝜇𝑚. 

 

5. The effective convection term: 
As discussed in the theoretical discussion (Section 3.3), an estimation of the air losses ℎ provides a tool to 

improve the accuracy of the fitting model and enables the use of Eq. 6 instead of Eq. 5. 

5.1. Identification of the underlying physical modeling: 

The dimensionless Rayleigh number 𝑅𝑎 defines the ratio between buoyancy forces and viscous forces 

[14]. For a given characteristic length 𝐿𝑐 and a temperature difference Δ𝑇 between the solid surface and 

the environment, a 𝑅𝑎 < 10 indicates that the viscous forces are dominant and heat transfer can be 

modelled as a diffusion problem. At the scale of or problem 𝐿𝑐, which in this case can be considered as 

the equivalent NS diameter 𝜙 , a 𝑅𝑎 of ~10−12 is obtained. Thus, no convection is expected no matter 

the imposed temperature gradient, the NS length nor the NS equivalent diameter in the ranges of 

operation of the problem (∆𝑇 ∈ [10 − 100] 𝐾, 𝐿𝑐 ∈ [500 − 5000] 𝑛𝑚 and 𝜙 ∈ [50 − 200] 𝑛𝑚 

respectively).  

However, due to the small scale of the problem, the conduction modelling via diffusion equations is not 

valid too close of the NS walls either, since 𝜙 and the distance from the NS to the substrate are not 

distinctly above the mean free path of the cooling medium (𝜆𝑎𝑖𝑟= 63 nm [15]). Indeed, the dimensionless 

Knudsen number 𝐾𝑛 = 𝜆/𝑙 , defined as the ratio of the molecular mean free path length to a 

representative physical length scale [16], ranges from 1 to 0.05 depending on the characteristic length 𝐿𝑐 

considered for its calculation. In this situation one cannot adopt a purely diffusive model (Fourier’s law) 



for obtaining ℎ (e.g. as the shape factors of [14]). Thus, free molecular flow needs to be modelled in the 

surrounding of the NSs surfaces to accurately model the air heat transfer loses. 

5.2. The two-layer model: 

A two-layer model represented in Supplementary Figure 9 is employed to model the effective convective 

term. According to Wang et al. [17], in this model the equivalent Nusselt number of the heat transfer 

problem can be computed as follows: 

𝑁𝑢 =
4 𝛼𝑓𝑓𝑛𝑐𝑟𝜉/𝜋 

𝛽 + 𝑓𝑛𝑐𝑟(ξ + Ψ) ln (
𝑛𝑟(𝜉 + 0.4)

𝜉 + 𝛹
)

= 2𝑟𝑁𝑆

ℎ

𝜅𝑎𝑖𝑟
 

Eq. S. 29 

Where 𝛼𝑓 is the gas accommodation factor for the solid material surface 𝜉 = 𝑟𝑠 𝜆⁄ = 𝑟𝑁𝑊 𝜆⁄ = 𝐾𝑛−1 is 

the normalized solid (NS) radius which is indeed the inverse of the Knudsen number of the problem, being 

𝜆 the mean molecular free path, Ψ = Δ 𝜆⁄  is the normalized non-continuum layer thickness, 𝑛𝑟 is the ratio 

of the continuous radius layer with respect to 1.4 times the surface radius, 𝛽 is a geometrical correction 

factor (equal to 1/24 for a cylinder) and 𝑓𝑛𝑐𝑟 a correction factor of the molecular impact flux. 

The mean free path is calculated as: 

𝜆 =
𝐾𝑏𝑇

√2 𝜋 𝑑𝑚
2  𝑃

 Eq. S. 30 

Being 𝐾𝑏 the Boltzmann constant, 𝑇 the temperature, 𝑑𝑚 the molecular diameter (for the case of air, 𝑁2 

molecule diameter is used) and 𝑃 the gas pressure. Finally, the molecular impact flux correction factor is 

expressed as: 

𝑓𝑛𝑐𝑟  =  𝜉 (1 +  𝜉𝑒𝜉  𝐸𝑖(−𝜉)) Eq. S. 31 

 
 

Supplementary Figure 9. Two-layer model scheme applied to a circular nanowire. The inner layer (non-
continuum) is modelled using a free molecular regime whereas the outer layer (continuum) is solved 
using diffusion approach. Adapted from [17]. 

Where 𝐸𝑖(𝑥) stands for the exponential integral of 𝑥. Supplementary Table 1 summarizes the values 

used in this work for all parameters of the aforementioned model and its sources. 

NW
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Supplementary Table 1. Summary of parameters used for ℎ estimation using the 2-layer model. 

Parameter Expression Value Ref 

𝜆 
𝐾𝑏𝑇

√2 𝜋 𝑑𝑚
2  𝑃

 100 nm [18] 

𝑑𝑚 𝑑𝑚(𝐺𝑎𝑠)∗ 308 pm [19] 

Δ 𝜆/0.05 † 2 µm [18] 

𝜉 𝑟𝑁𝑊 𝜆⁄  1 [17] 

𝛹 Δ 𝜆⁄  20 [18] 

𝑛𝑟 𝑟∞/(1.4 𝑟𝑁𝑊) 100 [17] 

𝛼𝑓 𝛼𝑓(𝐺𝑎𝑠, 𝑆𝑜𝑙𝑖𝑑)∗ 0.83 [20] 

𝛽 
1

8
∫

𝜎𝑁𝑊

𝜎𝑔
𝑑𝑥

2𝜆

0

 
1

24
 [17] 

𝑓𝑛𝑐𝑟 𝜉 (1 +  𝜉𝑒𝜉  𝐸𝑖(−𝜉)) 1 [17] 

* Experimental values 

† Forced to have Kn < 0.05 in the transition to continuum media 

5.3. Estimations of the effective heat transfer coefficient: 

Supplementary Figure 10 shows the predicted Nusselt number and corresponding heat transfer 

coefficient of the described two-layer model. The shadowed regions represent the expected range for the 

problem conditions, i.e. an ~100 𝑘𝑃𝑎 and NW diameters ranging from 50 to 250 𝑛𝑚. As it can be 

appreciated, the heat transfer coefficient is calculated to be in the 2 - 8 𝑘𝑊/𝑚2𝐾 range. 
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Supplementary Figure 10. Estimation of the Nusselt number 𝑵𝒖 and the heat transfer coefficient 𝒉 as 
a function of NW diameter. Top 𝒙 axis represents the equivalent Knudsen number 𝑲𝒏 for that 
particular conditions. 

 
 
 



6. SiGe Composition: 
The micromachined device used to growth suspended Si and SiGe NWs is mainly made of Si, thus making 

impossible to compositionally characterize the scanned SiGe NW due to the strong Si signal of the 

background. In order to overcome this issue, an EDX analysis (Supplementary Figure 11A) was performed 

over vertical SiGe NWs grown over Si substrate under the same CVD process (Supplementary Figure 11B). 

A Ge composition of x = 0.33 was estimated. 

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.25

0.50

0.75

1.00

1.25

GeLa

SiKa

OKaN
o

rm
a
liz

e
d
 C

o
u
n

ts
 (

-)

Energy (keV)

Quantification: Si0.67Ge0.33

  

Supplementary Figure 11. A) EDS spectrum used for the compositional analysis of the SiGe NW. B) Cross 
sectional view of a Si chip with SiGe NWs grown in the same VLS process as the studied NW. 
 

7. Additional z scan data 
As it is summarized in section 4.4, additional 𝜅 estimations were performed using the detachment curves 

of the z scans. Supplementary Figure 12 shows the 𝛿𝐺 curve as a function of the tip position for the Si NW 

whereas results of the SiGe NW are shown in Supplementary Figure 13. 
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Supplementary Figure 12. Contact conductance change as a function of tip position for the detachment 
scans over the Si NW. 
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Supplementary Figure 13. Contact conductance change as a function of tip position for the detachment 
scans over the SiGe NW. 

As it was remarked in Table 3 of the main article, slightly different values of 𝜅 were obtained depending 

on the set of data used. While some variation can be attributed to the stochastic noise of the 

measurement (especially relevant in the case of the rough surface of Si NWs) a second consideration 

perhaps more relevant has to be considered. If the force curves of a single point z-approach 

measurements are plotted (Supplementary Figure 14) one can see that the attachment and detachment 

points do not fully coincide. This difference is due to the attractive forces taking place in the contact. In 

the approach case the tip needs to reach lower to the NW until the event takes place. When the tip is 

already in contact, 𝐺 dependence with 𝑧 is considerably less relevant as the NW presents an alternative 

path thermal path, thus the 𝐺 curve is flattened considerably (se Figure 1D and Supplementary Figure 3). 

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

-10

-5

0

5

10

F
o
rc

e
 (

n
N

)

Z Probe position (mm)

 Approach

 Detachment

 
Supplementary Figure 14. Comparison between approach and detachment force curves. The sticking 
forces between tip a nanostructure hold the union for at least 100 nm above the NW rest height until 
the detachment event took place (when elastic forces of the NW overcome them). The flatness in the 
detachment curve was produced by and out-of-scale event.  

In the detachment scan, the NW is stick to the tip and it can be bended upwards a few nm from the 

horizontal equilibrium height until the electric forces are enough to detach the NW from the tip. When 

this happens, the SThM tip is higher than when the contact took place. As the 𝐺 measured is also strongly 

dependent of the tip height, the measured 𝛿𝐺 might seem bigger because it is attributing to the 𝛿𝐺 a 𝑧 

variation of 𝐺. Thus, a higher 𝜅 might be inferred due to this artefact likely making this hysteresis-like 

effect responsible for the differences in values obtained. 
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