Supplementary Information

The CdTiO₃/BaTiO₃ Superlattice Interface from First Principles

Le Fang^{1,2}, Chen Chen^{1,2}, A.Sundaresan³, Chandrabhas Narayana³, Nikita Ter-Oganessian⁴, A.P. Pyatakov⁵, Shixun Cao^{*1,2}, Jincang Zhang^{*1,2}, and Wei Ren^{*1,2} ¹Materials Genome Institute, International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China ²State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China ³Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India ⁴Institute of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia ⁵M.V. Lomonosov Moscow State University, Faculty of Physics 1-2 Leninskiye Gory, GSP-1, Moscow, 119991, Russia

* sxcao@shu.edu.cn; jczhang@shu.edu.cn; renwei@shu.edu.cn

Figure S1. Orbital-projected band structures for conduction bands of bulk-phase (a) CdTiO₃ with in-plane lattice constant of BaTiO₃, (b) cubic SrTiO₃ and (c) tetragonal BaTiO₃. The red dots are for Cd-5s states and the purple dots are for Ti-3d states.

Figure S2. Orbital-projected band structures for the O 2p states of the p-type conductivities in $(CdTiO_3)_4/(BaTiO_3)_8$ superlattice. The red circles in (a), (b) and (c) are for p_x , p_y and p_z orbitals respectively.

Figure S3. Orbital-projected band structures for Ti 3d states of (a) $(CdTiO_3)_4/(BaTiO_3)_8$ and (b) $(SrTiO_3)_4/(BaTiO_3)_8$ superlattices.

Figure S4. The calculated band structures for the $(CdTiO_3)_4/(BaTiO_3)_8$ superlattice of (a) a=b=4 Å and (b) a=b=3.905Å.

Figure S5. The calculated total density of states (DOS) for P_+ and P_- of the $(CdTiO_3)_4/(BaTiO_3)_8$ superlattice.

Figure S6. The calculated layer-resolved partial DOS for the $(CdTiO_3)_4/(BaTiO_3)_8$ superlattice along P. direction in the range from -3.0 eV to 3.0 eV on each BaO, CdO and TiO₂ layer.

Figure S7. The calculated total density of states (DOS) for the supercell model (without vacuum) and thin film model (with vacuum) of the $(CdTiO_3)_8/(BaTiO_3)_6$ heterostructure.

Figure S8. Structural distortions in the $(CdTiO_3)_n/(BaTiO_3)_8$ heterostructure (n=4 and 6) with the change in the number of $CdTiO_3$ layers along c-axis for (a) A-site cation (Cd in CdTiO_3 and Ba in BaTiO_3) displacements and (b) B-site cation (Ti in CdTiO_3 and BaTiO_3) displacements along the c-axis with respect to the oxygen in the plane. The black/red line is the supercell/thin film model without/with vacuum, respectively.