Supporting Information for

Switching on near-infrared light in lanthanide-doped CsPbCl₃ perovskite nanocrystals

Min Zeng,^{a,b,c} Federico Locardi,^c Dimitrije Mara,^d Zeger Hens,^c Rik Van Deun^b and Flavia Artizzu^{*b}

^a Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Sciences, Hubei University, Wuhan 430062, China

^b L³–Luminescent Lanthanide Lab, Ghent University, Gent 9000, Belgium

^c Physics and Chemistry of Nanostructures (PCN), Ghent University, Gent 9000, Belgium

^d Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium

*Corresponding Author: Flavia.Artizzu@UGent.be

Table of contents

1. Table S1 Nominal and actual doping concentrations in CsPbCl₃ NCs.

2. Fig. S1 Spectral overlaps between Mn²⁺ emission and Ln³⁺ absorption.

3. Fig. S2 Absorption spectra, PL spectra and PL decay curves of the CsPbCl₃ NCs without and with different doping concentrations of Mn²⁺ ions.

4. Fig. S3 TEM images of undoped and doped CsPbCl₃ NCs.

5. Fig. S4 PL decay curves of undoped and doped CsPbCl₃ NCs collected by monitoring the band-edge emission.

6. Fig. S5 PL spectra and decay curves of Mn²⁺–Er³⁺ codoped CsPbCl₃ NCs with different doping concentrations.

7. Table S2 Decay parameters of the Mn^{2+} emission at 600 nm in Mn^{2+} -doped and codoped CsPbCl₃ NCs.

8. Fig. S6 Schematic energy-level diagram illustrating the possible energy-transfer mechanism.

Table S1 Nominal and actual doping concentrations in CsPbCl₃ NCs, determined by XRF measurements. The amount of Pb(CH₃CO₂)₂ is fixed at 0.2 mmol.

	Starting amounts ^a		Actual amounts		
Nominal ratio	Mn(CH ₃ CO ₂) ₃	Ln(CH ₃ CO ₂) ₃	Pb (%)	Mn (%)	Ln (%)
	(mmol)	(mmol)			
Mn/Pb = 2.5%	0.005	—	99.42%	0.58%	—
Mn/Pb = 5.0%	0.01	—	98.59%	1.41%	—
Mn/Pb = 10%	0.02	—	97.33%	2.67%	—
Mn/Pb = 15%	0.03	—	96.57%	3.43%	—
Er/Pb = 10%	—	0.02	99.45%	—	0.55%
Ho/Pb = 10%	—	0.02	99.60%	—	0.40%
Nd/Pb = 10%	—	0.02	97.66%	—	2.34%
Mn ²⁺ –Er ³⁺ (2: 1)	0.01	0.005	98.64%	1.27%	0.09%
Mn ²⁺ –Er ³⁺ (1: 1)	0.01	0.01	98.69%	1.16%	0.15%
Mn ²⁺ –Er ³⁺ (1: 2)	0.01	0.02	98.73%	1.03%	0.24%
Mn ²⁺ –Er ³⁺ (1: 4)	0.01	0.04	98.91%	0.71%	0.38%
Mn ²⁺ –Ho ³⁺ (1: 2)	0.01	0.02	98.97%	0.86%	0.17%
Mn ²⁺ –Nd ³⁺ (1: 2)	0.01	0.02	93.88%	1.19%	4.93%

^aThe starting amount of Ho might be overestimated considering the x-hydrate $[Ho(CH_3CO_2)_3 \cdot xH_2O]$ formula of the precursor.

Fig. S1 Spectral overlaps between (a) Mn^{2+} emission and Er^{3+} absorption, (b) Mn^{2+} emission and Ho^{3+} absorption, and (c) Mn^{2+} emission and Nd^{3+} absorption. The Ln^{3+} ions (Er^{3+} , Ho^{3+} and Nd^{3+}) absorption spectra were obtained from 0.05 M lanthanide chloride salts aqueous solution.

Fig. S2 Optical properties of CsPbCl₃ NCs without and with different doping concentrations of Mn^{2+} ions. (a) Absorption spectra (optical density at first exciton is below 0.3), (b) PL spectra normalized at the band-edge emission, (c) decay curves monitored by the $Mn^{2+} {}^{4}T_{1} \rightarrow {}^{6}A_{1}$ transition at 600 nm. The broadening of the band-edge absorption band with increasing Mn^{2+} doping can be attributed to the increased inhomogeneous morphologies of the NCs, as shown in Fig. S3a and b. The decrease in PL intensity and the shortening of the decay dynamics of Mn^{2+} emission in Mn^{2+} -doped NCs with increasing Mn^{2+} content (>1.4%) can be attributed to the Mn^{2+} -Mn^{2+} coupling interactions and formed defects/traps near the Mn^{2+} ions.¹

Fig. S3 TEM images of (a) undoped CsPbCl₃ NCs, (b) 1.41% Mn²⁺, (c) 1.03% Mn²⁺–0.24% Er³⁺, (d) 0.86% Mn²⁺–0.17% Ho³⁺, and (e) 1.19% Mn²⁺–4.93% Nd³⁺ codoped CsPbCl₃ NCs together with the corresponding size distribution histograms. The scale bars are 100 nm.

Fig. S4 PL decay curves of undoped and doped CsPbCl₃ NCs collected by monitoring the band-edge emission of the CsPbCl₃ host ($\lambda_{ex} = 350$ nm). The instrumental response function (IRF) was determined to be approximately 0.8 ns by measuring the scattering of a Ludox solution. The BE emission lifetimes of undoped and Er³⁺-doped NCs are ~2.4 and 12.3 ns, respectively.

Fig. S5 (a) PL spectra of Mn²⁺–Er³⁺ codoped CsPbCl₃ NCs with different doping concentrations under excitation at 365 nm. It is worth noting that, while maintaining the same nominal amount, the actual Mn²⁺ concentration decreases as the Er³⁺ loading is increased, likely indicating a competition of the two ions for the doping sites. (b) Corresponding PL decay curves collected by monitoring Er³⁺ emission at 1542 nm.

Table S2 Decay parameters of the Mn²⁺ emission at 600 nm in Mn²⁺-doped, Mn²⁺–Er³⁺, Mn²⁺–Ho³⁺ and Mn²⁺–Nd³⁺ codoped CsPbCl₃ NCs. Average lifetimes: $\tau = \Sigma A_i \tau_i / \Sigma A_{i,}$, where A_i and τ_i represent the amplitude and the lifetime component of the multiple exponential functions by fitting the PL decay curve, respectively; energy transfer efficiency: $\eta = 1 - \tau_{Mn-Ln} / \tau_{Mn}$, where τ_{Mn-Ln} and τ_{Mn} are the lifetimes of Mn²⁺ emission in the presence and absence of Ln³⁺, respectively.

Sample	τ ₁ (ms) (A ₁)	τ ₂ (ms) (A ₂)	τ (ms)	η
Mn ²⁺		1.30	1.30	
Mn ²⁺ –Er ³⁺	0.27 (0.43)	1.19 (0.57)	0.79	39.2%
Mn ²⁺ –Ho ³⁺	0.23 (0.37)	1.21 (0.63)	0.85	34.6%
Mn ²⁺ –Nd ³⁺	0.12 (0.65)	0.88 (0.35)	0.39	70.0%

Fig. S6 Schematic energy-level diagram illustrating the possible energy-transfer mechanism in (a) Mn²⁺–Ho³⁺ codoped CsPbCl₃ NCs and (b) Mn²⁺–Nd³⁺ codoped CsPbCl₃ NCs. The vertical blue arrow represents the host band-edge (BE) emission, the vertical orange arrow corresponds to the Mn²⁺ d–d transition, the vertical colorful arrow to the f–f transition of Ho³⁺ and Nd³⁺, and the zigzag black arrow depicts the nonradiative recombination (NRR). Energy transfer (ET) processes are indicated by dashed black arrows.

Fig. S6 depicts the proposed energy-transfer mechanism in $Mn^{2+}-Ho^{3+}$ and $Mn^{2+}-Nd^{3+}$ codoped CsPbCl₃ NCs. The energy-transfer processes from the CsPbCl₃ host to the Mn²⁺ ions in both cases are similar. For Mn²⁺-Ho³⁺ codoped CsPbCl₃ NCs, energy is first transferred from Mn²⁺ to the ⁵F₅ excited state of Ho³⁺ and then radiative decay to the ⁵I₆ and ⁵I₇ energy levels occurs giving rise to emission at wavelengths of 986 nm and 1484 nm. For Mn²⁺-Nd³⁺ codoped CsPbCl₃ NCs, the obtained energy in the ⁴T₁ d-state of Mn²⁺ is transferred to the lower ⁴G_{5/2} and ⁴F_{9/2} receiving energy levels of Nd³⁺ and then experiences nonradiative relaxation to the ⁴F_{3/2} emitting level, followed by the radiative emissions at 888 nm, 1064 nm and 1340 nm.

S10

REFERENCES

1 K. Xing, X. Yuan, Y. Wang, J. Li, Y. Wang, Y. Fan, L. Yuan, K. Li, Z. Wu, H. Li and J. Zhao, *J. Phys. Chem. Lett.*, 2019, **10**, 4177-4184.