Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supplementary Materials for

Design of 2D materials – $MSi_2C_xN_{4-x}$ (M = Cr, Mo, and W; x = 1 and 2) with tunable

electronic and magnetic properties

Bowen Li¹⁺, Jiazhong Geng¹⁺, Haoqiang Ai², Youchao Kong¹, Haoyun Bai¹, Kin Ho Lo², Kar Wei Ng^{1*}, Yoshiyuki Kawazoe^{3,4,5}, and Hui Pan^{1,6*}

¹Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR,

999078, P.R.China

²Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China

³New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan

⁴Department of Physics and Nanotechnology, SRM Institute of Science and Technology,

Kattankulathur 603203, Tamil Nadu, India

⁵School of Physics, Suranaree University of Technology, 111 University Avenue Muang, Nakhon Ratchasima 30000, Thailand

⁶Department of Physics and Chemistry, Faculty of Science and Technology, University of

Macau, Macao SAR, 999078, P. R. China

*Corresponding Authors

H. Pan: huipan@um.edu.mo (email), +853 88224427 (tel.), +853-88222454 (fax)

K. W. Ng: billyng@um.edu.mo (email)

⁺The two authors contribute to this work equally.

Structure	a (Å)	b (Å)	c (Å)	θ1 (°)	θ2 (°)	Space Group
CrSi ₂ N ₄	2.84531	2.84531	24.53985	90.45	69.90	P3m1
CrSi ₂ CN ₃	2.93316	2.93316	23.09139	90.58	70.06	P3m1
$CrSi_2N_2C_2$	3.02460	3.02460	23.64520	94.02	64.73	$p\overline{6}_{m2}$
CrSi ₂ N ₃ C	2.92179	2.92179	25.33855	92.24	67.78	P3m1
$MoSi_2N_4$	2.91155	2.91155	25.51660	88.14	73.13	P3m1
MoSi ₂ CN ₃	2.92303	2.92303	23.25167	87.53	73.25	P3m1
$MoSi_2N_2C_2$	3.04500	3.04500	23.32958	91.26	68.73	$P\overline{6}m2$
MoSi ₂ N ₃ C	2.97916	2.97916	24.37215	90.20	70.75	P3m1
WSi_2N_4	2.91605	2.91605	23.36308	87.87	73.51	P3m1
WSi ₂ CN ₃	2.93970	2.93970	22.98874	87.40	72.97	P3m1
$WSi_2N_2C_2$	3.04615	3.04615	23.31187	91.03	69.07	$p\overline{6}_{m2}$
WSi_2N_3C	2.98016	2.98016	24.35565	90.03	89.20	P3m1

Table S1. Structural parameters, including lattice constants, bonding angle, and corresponding

space group for MSi₂N₄ and MSi₂C_xN_{4-x}.

Table S2. Calculated ground energy (eV/supercell), band gap (E_g) (eV) and conducting propoerties (CP) of MSi_2N_4 systems in non-magnetic (NM), anti-ferromagnetic (AFM) and ferromagnetic (FM) states. S – Semiconductor.

Structure	NM	AFM	FM	Eg	СР
CrSi ₂ N ₄	-238.344	-238.344	-238.344	0.49	S
$MoSi_2N_4$	-246.916	-246.916	-246.916	1.74	S
WSi_2N_4	-255.028	-255.028	-255.028	2.08	S

Figure S1. Structures for (a) $CrSi_2C_2N_2$, (b) $MoSi_2C_2N_2$, and (c) $WSi_2C_2N_2$.

Figure S2. Calculated phonon dispersions for: (a) $CrSi_2C_2N_2$, (b) $MoSi_2C_2N_2$, and (c) $WSi_2C_2N_2$.

Figure S3. Phonon dispersions for (a) $CrSi_2CN_3$, (b) $CrSi_2N_2C_2$, (c) $CrSi_2N_3C$, (d) $MoSi_2CN_3$, (e) $MoSi_2N_2C_2$, (f) $MoSi_2N_3C$, (g) WSi_2CN_3 , (h) $WSi_2N_2C_2$, and (i) WSi_2N_3C .

Figure S4. The energy vibrations and final structures after the AIMD test for (a) $CrSi_2CN_3$, (b) $CrSi_2N_2C_2$, (c) $CrSi_2N_3C$, (d) $MoSi_2CN_3$, (e) $MoSi_2N_2C_2$, (f) $MoSi_2N_3C$, (g) WSi_2CN_3 , (h) $WSi_2N_2C_2$, and (i) WSi_2N_3C .

Figure S5. Band structures and TDOSs: (a) CrSi₂N₄, (b) MoSi₂N₄, and (c) WSi₂N₄.

Figure S6. Calculated electronic properties of FM MoSi₂N₃C, WSi₂N₂C₂, and WSi₂N₃C: (a) band structure and TDOSs of MoSi₂N₃C; (b) PDOSs of C, N, and Mo atom's p-electrons in MoSi₂N₃C; (c) PDOSs of Mo d-electrons in MoSi₂N₃C; (d) band structure and TDOSs of WSi₂N₂C₂; (e) PDOSs of C, N, and W atom's p-electrons in WSi₂N₂C₂; (f) PDOSs of W d-electrons in WSi₂N₂C₂; (g) band structure and TDOSs of WSi₂N₃C; (h) PDOSs of C, N, and W atom's p-electrons in WSi₂N₃C; and (i) PDOSs of W d-electrons in WSi₂N₃C.

Figure S7. Calculated electronic properties of AFM MoSi₂N₃C, WSi₂N₂C₂, and WSi₂N₃C: (a) band structure and TDOSs of MoSi₂N₃C; (b) PDOSs of C, N, and Mo atom's p-electrons in MoSi₂N₃C; (c) PDOSs of Mo d-electrons in MoSi₂N₃C; (d) band structure and TDOSs of WSi₂N₂C₂; (e) PDOSs of C, N, and W atom's p-electrons in WSi₂N₂C₂; (f) PDOSs of W d-electrons in WSi₂N₂C₂; (g) band structure and TDOSs of WSi₂N₃C; (h) PDOSs of C, N, and W atom's p-electrons in WSi₂N₃C; and (i) PDOSs of W d-electrons in WSi₂N₃C.

Figure S8. Contributions to PBANDs for $MoSi_2CN_3$: (a) total electrons of C atoms, (b) pz-orbital electrons of C atoms, (c) total electrons of Mo atoms, and (d) dz^2 -orbital electrons of Mo atoms.

Figure S9. Contributions to PBANDs for WSi_2CN_3 : (a) total electrons of C atoms, (b) pz-orbital electrons of C atoms, (c) total electrons of W atoms, and (d) dz²-orbital electrons of W atoms.

Figure S10. Contributions to PBANDs for FM $CrSi_2CN_3$: (a) total spin-up electrons of C atoms, (b) pz-orbital spin-up electrons of C atoms, (c) total spin-down electrons of C atoms, (d) pz-orbital spin-down electrons of C atoms, (e) total spin-up electrons of Cr atoms, (f) dz²-orbital spin-up electrons of Cr atoms, (g) total spin-down electrons of Cr atoms, and (h) dz²-orbital spin-down electrons of Cr atoms.

Figure S11. Contributions to PBANDs for AFM $CrSi_2N_2C_2$: (a) total electrons of C atoms, (b) pz-orbital electrons of C atoms, (c) total electrons of Cr atoms, and (d) dz²-orbital electrons of Cr atoms.

Figure S12. Contributions to PBANDs for AFM $CrSi_2N_3C$: (a) total electrons of C atoms, (b) pzorbital electrons of C atoms, (c) total electrons of Cr atoms, and (d) dz²-orbital electrons of Cr atoms.

Figure S13. Contributions to PBANDs for AFM $MoSi_2N_2C_2$: (a) total electrons of C atoms, (b) pz-orbital electrons of C atoms, (c) total electrons of Mo atoms, and (d) dz²-orbital electrons of Mo atoms.

Figure S14. Contributions to PBANDs for FM $MoSi_2N_3C$: (a) total spin-up electrons of C atoms, (b) pz-orbital spin-up electrons of C atoms, (c) total spin-down electrons of C atoms, (d) pz-orbital spin-down electrons of C atoms, (e) total spin-up electrons of Mo atoms, (f) dz²-orbital spin-up electrons of Mo atoms, (g) total spin-down electrons of Mo atoms, and (h) dz²-orbital spin-down electrons of Mo atoms.

Figure S15. Contributions to PBANDs for FM $WSi_2N_2C_2$: (a) total spin-up electrons of C atoms, (b) pz-orbital orbital spin-up electrons of C atoms, (c) total spin-down electrons of C atoms, (d) pz-orbital spin-down electrons of C atoms (e) total spin-up electrons of W atoms, (f) dz²-orbital spin-up electrons of W atoms, (g) total spin-down electrons of W atoms, and (h) dz²-orbital spindown electrons of W atoms.

Figure S16. Contributions to PBANDs for FM WSi_2N_3C : (a) total spin-up electrons of C atoms, (b) pz-orbital spin-up electrons of C atoms, (c) total spin-down electrons of C atoms, (d) pz-orbital spin-down electrons of C atoms, (e) total spin-up electrons of W atoms, (f) dz²-orbital spin-up electrons of W atoms, (g) total spin-down electrons of W atoms, and (h) dz²-orbital spin-down electrons of W atoms.

Figure S17. Contributions to PBANDs for AFM $MoSi_2N_3C$: (a) total electrons of C atoms, (b) pz-orbital electrons of C atoms, (c) total electrons of Mo atoms, and (d) dz^2 -orbital electrons of Mo atoms.

Figure S18. Contributions to PBANDs for AFM $WSi_2N_2C_2$: (a) total electrons of C atoms, (b) pzorbital electrons of C atoms, (c) total electrons of W atoms, and (d) dz²-orbital electrons of W atoms.

Figure S19. Contributions to PBANDs for AFM WSi_2N_3C : (a) total electrons of C atoms, (b) pzorbital electrons of C atoms, (c) total electrons of W atoms, and (d) dz^2 -orbital electrons of W atoms.

Figure S20. Calculated spin-density for: (a) FM $CrSi_2CN_3$, (b) AFM $CrSi_2N_2C_2$, (c) AFM $CrSi_2N_3C$, (d) AFM $MoSi_2N_2C_2$, (e) AFM $MoSi_2N_3C$, (f) FM $MoSi_2N_3C$, (g) FM $WSi_2N_2C_2$, (h) AFM $WSi_2N_2C_2$, (i) AFM WSi_2N_3C , and (j) FM WSi_2N_3C . Yellow and azure indicate spin-up state and spin-down states, respectively.

Figure S21. PDOSs of Cr-d electrons in (a) $CrSi_2N_2C_2$ and (b) $CrSi_2N_3C$.

Figure S22. PDOS of Mo-d electrons in (a) $MoSi_2N_2C_2$ and (b) $MoSi_2N_3C$.