

Supporting Information for

Limonene-in-Water Pickering Emulsion and On-Demand Separation Using Thermo-Responsive Biodegradable Nanoparticles

Nicolò Manfredini^l, Manuel Merigo^l, Juri Ilare^l, Mattia Sponchioni^{l,*} and Davide Moscatelli^l

^lDepartment of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7 - 20131 Milano, Italy.

Figure S1: ¹H-NMR characterization and proton assignment for HEMACL3 ($q=3$). The analysis was performed on a Bruker Ultrashield 400 MHz spectrometer using deuterated chloroform ($CDCl_3$) as solvent.

The monomer conversion (X_{CL}) was calculated according to eq. S1:

$$X_{CL} = \left(\frac{H + I}{H + I + M} \right) * 100 \quad (S1)$$

Where M represents the area under the signal of the two hydrogens adjacent to the ester group in the CL monomer, H indicates the peaks equivalent to the two hydrogen atoms adjacent to the ester group and I corresponds to hydrogens of the carbon near the chain-end hydroxyl group.

The degree of polymerization (q) was obtained using the area of the same signals according to **eq. S2**:

$$q = \frac{H}{I} + 1 \quad (S2)$$

Table S1: Properties of the oligoesters synthesized. The ϵ -caprolactone conversion (X_{CL}) and average macromonomer chain length (q) were determined via NMR according to eqs. S1 and S2. The number-average molecular weight (M_n) and dispersity (D) were obtained via GPC.

Sample	X_{CL} [%]	q [-]	M_n [Da]	D [-]
HEMACL3	94.25	3.31	577	1.25
HEMACL5	98.91	5.24	858	1.22

Figure S2: $^1\text{H-NMR}$ characterization and proton assignment for 20EG_4 ($n=20$). The analysis was performed on a Bruker Ultrashield 400 MHz spectrometer using deuterated chloroform (CDCl_3) as solvent.

The monomer conversion (X_{EG_4}) was calculated according to **eq. S3**:

$$X_{\text{EG}_4} = \left(\frac{F}{E + F} \right) * 100 \quad (\text{S3})$$

Where E and F are the area of the peaks attributed to the two hydrogens close to the oxygen in the unreacted monomer and polymer, respectively.

The degree of polymerization (n) was calculated with **eq. S4**:

$$n = \frac{F}{B} \quad (\text{S4})$$

Where B is associated to the two hydrogens of the aromatic ring in the chain transfer agent.

Table S2: Properties of the macro CTAs synthesized. The monomer conversion (X_{EG_4}) and average chain length (n) were determined via NMR according to eqs. S3 and S4. The number-average molecular weight (M_n) and dispersity (D) were obtained via GPC.

Sample	X_{EG_4} [%]	n [-]	M_n [Da]	D [-]
20EG ₄	95.43	25.09	8456	1.12
40EG ₄	96.23	43.41	12013	1.07

Figure S3: ^1H -NMR characterization and proton assignment for $20\text{EG}_4\text{-}15\text{CL3}$ ($p=15$). The analysis was performed on a Bruker Ultrashield 400 MHz spectrometer using deuterated chloroform (CDCl_3) as solvent.

The monomer conversion (X) according to eq. S5:

$$X = \left(1 - \frac{2qO}{R}\right) * 100 \quad (\text{S5})$$

R is the area of the peak attributed to the two vinyl hydrogens in the unreacted monomer, O is the area of the peak associated to the hydrogens near the carbonyl group either in the monomer or in the polymer and q the average chain length of the macromonomer.

The degree of polymerization (p) was calculated according to **eq. S6**:

$$p = \frac{\frac{R}{2q}}{\frac{S}{3n}} = \frac{3nR}{2qS} \quad (\text{S6})$$

Where R and S are the areas of the corresponding peaks shown in **Figure S3**, while q and n are the average chain lengths of the macromonomer and the macro CTA adopted using the synthesis and reported in **Table S1** and **Table S2**, respectively.

Table S3: *Properties of the synthesized NPs in terms of monomer conversion (X) and average degree of polymerization (p) determined from ^1H NMR and number-average molecular weight (Mn) and dispersity (D) measured via GPC.*

Sample	X [%]	p [-]	Mn [Da]	D [-]
20EG ₄ -15CL3	98.90	15.42	23145	1.11
20EG ₄ -25CL3	98.65	23.27	26432	1.11
20EG ₄ -50CL3	98.90	52.59	42145	1.21
40EG ₄ -15CL3	98.21	17.30	28121	1.11
40EG ₄ -25CL3	99.62	24.80	29573	1.17
40EG ₄ -50CL3	99.16	53.32	52890	1.21
20EG ₄ -25CL5	98.72	25.17	32113	1.26
40EG ₄ -15CL5	99.52	13.51	31065	1.19
40EG ₄ -25CL5	99.26	27.43	43125	1.21
40EG ₄ -50CL5	97.94	48.15	56859	1.12
20EG ₄ -25CL3_Rh	99.33	26.78	28819	1.32

Figure S4: (a) Relative scattering intensity (RSI) as a function of time in the case of 40EG4-15CL5 (■) 40EG4-25CL5 (▲) and 40EG4-50CL5 (●), when the samples are diluted to 0.5% w/w in a solution of NaOH 0.1 M. (b) NP size as function of time in the case of 40EG4-15CL5 (■) 40EG4-25CL5 (▲) and 40EG4-50CL5 (●), when the samples are diluted to 0.5% w/w in a solution of NaOH 0.1 M.

Figure S5: (a) TEM image of 40EG₄-50CL5, scale bar = 200 nm. (b) TEM image of 20EG₄-50CL3, scale bar = 300 nm. (c) TEM image of 20EG₄-25CL3_Rh, scale bar = 200 nm