Electronic Supplementary Information

PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility

Xingzhong Zhu,^a Aoqi Guo,^a Zhiyang Yan,^{b,c} Feng Qin,^{*b,c} Juan Xu,^a Yanda Ji,^a and Caixia Kan^{*a}

^a College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: cxkan@nuaa.edu.cn
^b Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China. E-mail: fq_soul2000@163.com
^c Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics, Mianyang 621900, China

Supplementary figure

Fig. S1 The cross-sectional SEM images of the PET/Ag NW/PMMA FTCFs with 5, 10, 15 and 20 wt% PMMA, respectively.

Supplementary tables

Table S1 The transmittances of PET/Ag NW/PMMA FTCFs with different concentrationsof PMMA.

PMMA	Thickness	Transmittance	Transmittance
(wt%)	(nm)	before PMMA (%)	after PMMA (%)
5	60	95.7	96.1
10	140		96.8
15	170		96.5
20	210		96.6

Table S2The performance of PET/Ag NW/PMMA FTCFs.

Area densities	Sheet resistance	Transmittance
(mg/m^2)	(Ω/sq)	(%)
178	7	89.5
161	10	91.3
134	15	93.3
78	21	95.6
73	31	96.2
67	39	97.2
62	50	97.7
53	82	98
45	98	99.2
36	112	99.7