Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Delicate control of crystallographic Cu₂O derived Ni-Co amorphous

double hydroxides nanocages for high-performance hybrid

supercapacitors: An experimental and computational investigation

Jiansen Wang^a, Liu Yang^a, Yibo Fu^a, Penggang Yin^b, Xiaohui Guan^{a*} and

Guangsheng Wang^{b*}

^a School of Chemical Engineering, Northeast Electric Power University, Jilin 132000,

PR China.

^b School of Chemistry, Beihang University, Beijing 100191, PR China

Figure S1. Atomic structures of Cu₂O surface: (100)-Cu (a), (100)-O (b), (111)-Cu (c), (111)-O (d), (111)-OO (e). Cu, blue; O, red.

Figure S2. SEM images of the Cu₂O crystals with different aging time synthesized at 80°C: 1 h (a), 1.5 h (b), 2 h (c), 2.5 h (d), 3 h (e) and 3.5 h (f). The inset of (a) shows the quasi-spherical Cu₂O crystals at high magnification.

Figure S3. SEM images (a, b) and XRD patterns (c) of the Cu_2O crystals synthesized at room temperature.

Figure S4. SEM images of Ni(OH)₂, Ni₇-Co₃ ADHs, Ni₁-Co₁ ADHs, Ni₃-Co₇ ADHs, Co(OH)₂ with different Ni/Co ratio: 1-5 represent 0:10, 3:7, 1:1, 7:3 and 10:0 (Ni:Co) respectively; a-c represent cube, sphere and flower structure respectively.

Figure S5. XRD patterns of Ni-Co ADHs, $Ni(OH)_2$ and $Co(OH)_2$ nanocages (a). HRTEM image of Ni-Co ADHs nanocages (b). HRTEM and SAED images of Ni(OH)₂ nanocages (c). HRTEM and SAED images of Co(OH)₂ nanocages (d).

Figure S6. EDS measurements of the typical Ni–Co ADHs nanocages.

Figure S7. CV curves of $Ni(OH)_2$ (a) and $Co(OH)_2$ (b) nanocages at different scan rates.

Figure S8. GCD curves of $Ni(OH)_2$ (a) and $Co(OH)_2$ (b) nanocages at different current densities.

Figure S9. CV (a-c) and GCD (d-f) curves of the amorphous hydroxide electrodes with different morphologies and Ni/Co ratios. Cube: a, d; Sphere: b, e; Flower: c, f.

Figure S10. Basic model of hydroxides clusters. $Ni(OH)_2$, Ni-Co ADHs and $Co(OH)_2$ are represented by $Ni_3Co_0O_6H_6$, $Ni_1Co_2O_6H_6$ and $Ni_0Co_3O_6H_6$ respectively. Clusters with unsaturated Ni and Co sites are recorded as $Ni_1Co_2O_6H_6$ -1 and $Ni_1Co_2O_6H_6$ -2, respectively.

Figure S11. CV curves of AC at different scan rates (a) and GCD curves of AC at different current densities (b).

Figure S12. CV curves of Ni-Co ADHs//AC HSC with different potential windows tested at a scan rate of 80 mV s⁻¹.

Figure S13. SEM images of Ni-Co ADHs after cycles.

Morphologies	Ni/Co ratio	Specific capacitance (F g ⁻¹)				
		Current density (A g ⁻¹)				
		1	2	5	10	20
Cube	Ni(OH) ₂	1091	907	741	578	436
	Ni7-Co3 ADHs	760	702	589	489	373
	Ni ₁ -Co ₁ ADHs	1120	1080	1000	918	804
	Ni ₃ -Co ₇ ADHs	1240	1218	1133	1058	933
	Co(OH) ₂	462	440	378	336	280
heterogeneous cube (2 h)	Ni ₃ -Co ₇ ADHs	1002	969	900	833	729
Sphere	Ni(OH) ₂	944	729	522	369	187
	Ni7-Co3 ADHs	1040	924	767	598	436
	Ni ₁ -Co ₁ ADHs	1067	1048	940	784	640
	Ni ₃ -Co ₇ ADHs	1707	1636	1523	1411	1280
	Co(OH) ₂	496	458	400	356	289
Flower	Ni(OH) ₂	991	751	518	378	231
	Ni7-Co3 ADHs	1051	964	789	638	480
	Ni ₁ -Co ₁ ADHs	1176	1138	1022	891	737
	Ni ₃ -Co7 ADHs	1129	1098	1022	933	804
	Co(OH) ₂	449	418	378	349	276

Table S1. The specific capacitance (at $1 \sim 20$ A g⁻¹) of the amorphous hydroxide prepared with different morphologies and Ni/Co ratio.

HM1	AM1-OH	AM1-O	HM2-1
$E_{cluster} = -67.51 \text{ eV}$	E _{Total} = -78.17 eV	E _{Total} = -72.70 eV	$E_{cluster} = -70.05 \text{ eV}$
АМ2-1-ОН	AM2-1-0	HM2-2	АМ2-2-ОН
$E_{\text{Total}} = -81.17 \text{ eV}$	$E_{Total} = -75.59 \text{ eV}$	$E_{cluster} = -71.03 \text{ eV}$	$E_{Total} = -82.00 \text{ eV}$
AM2-2-0	HM3	AM3-OH	AM3-0
E _{Total} = -76.80 eV	$E_{cluster} = -71.98 \text{ eV}$	$E_{Total} = -83.73 \text{ eV}$	E _{Total} = -78.11 eV

Table S2. Optimal hydroxides models (HM), adsorption models (AM) and relevant energies simulated by DFT. Ni, blue; Co, pink; O, red; H, white.