Supporting Information

Self-assembled CoSe₂-FeSe₂ Heteronanoparticles along the Carbon Nanotubes Network for Boosted Oxygen Evolution Reaction

Bin Wang^a^{\xi}, Katam Srinivas^a^{\xi}, Xinqiang Wang^a, Bo Yu^a, Xiaojuan zhang^a, Zhe Su^a, Yanfang Liu^b, Fei Ma^a, Dongxu Yang^a, Yuanfu Chen^{a,b}*

- ^a School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- ^b School of Science, and Institute of Oxygen Supply, Tibet University, Lhasa 850000, PR China

*Corresponding author.

Email address: yfchen@uestc.edu.cn

Tel.: +86 028 83202710

Synthesis of precursors

Preparation of Co-Fe-PBA/CNT: 1 mg/mL CNT pulp suspension was first prepared by ultrasonication (1 h) of 6 g multi-walled CNT paste in 300 mL of deionized water. Subsequently, 9 mmol cobalt(II) nitrate hexahydrate (2.62 g) and 13.5 mmol trisodium citrate dihydrate (3.97 g) were dissolved in a sequence to form solution **A**. Similarly, solution **B** was prepared by dissolving 6 mmol potassium hexacyanoferrate(II) (1.975 g) in 300 ml of deionized water. The as-prepared solution **B** was slowly added to solution **A** under continuous stirring at ambient temperature and the resulting mixture was allowed stir for additional 15 minutes. Thereafter, the attained mixed suspension was aged for 24 h at room temperature and then collected by centrifugation by washing with DI water and ethanol several times. The resulting sample was dried at 65 °C overnight and denoted as Co-Fe-PBA/CNT. Similar, methodology was used in fabricating Co-Co-PBA/CNT only by replacing potassium hexacyanoferrate(II) with Potassium hexacyanocobaltate(II).Similarly, Fe-Fe-PBA/CNT was prepared by replacing cobalt(II) nitrate hexahydrate with ferric nitrate(III) nonahydrate.

Preparation of Co-Fe-PBA-Se/CNT: 0.2 g of Co-Fe-PBA/CNT was dispersed in 60 ml ethylene glycol and allowed to stir at room temperature (30 min) in order to obtain a homogenous suspension. Then, controlled amounts of sodium selenite (1.13 g) was added into the homogenous suspension and stirred for additional 30 min. The resulting suspension was transferred into a three-neck flask and subjected to microwave assisted heating (120 °C) for 45 minutes. After cooling down naturally, the as-obtained precipitate was collected by centrifugation by washing with methanol and ethanol alternatively for several times. The resulting product was dried at 65 °C overnight and denoted as Co-Fe-PBA-Se/CNT.

Fig. S1 XRD pattern of Co-Fe-PBA/CNT and Co-Fe-PBA-Se/CNT.

Fig. S2 SEM image of Co-Fe-PBA/CNT (a-c), Co-Fe-PBA-Se/CNT (d–f) with different reaction time (15, 30 and 45 min, respectively).

Fig. S3 The high-resolution Co 2p (a), and Fe 2p (b) core-level XPS spectra of Co-Fe-PBA/CNT (**Before**) and Co-Fe-PBA-Se/CNT (**After**).

Fig. S4 FTIR spectrum of CoSe₂-FeSe₂/CNT.

Fig. S5 SEM mapping of element C, Se, Fe and Co in CoSe₂-FeSe₂/CNT.

Fig. S6 XPS survey scan of $CoSe_2$ -FeSe₂/CNT.

Fig. S7 LSV curves and corresponding Tafel plots of Co-Fe-PBA, Co-Fe-PBA/CNT, Co-Fe-PBA-Se/CNT, CoSe₂-FeSe₂/CNT and commercial RuO₂ electrocatalysts in 1.0 M KOH electrolyte (a,b), and overall water-splitting ability of CoSe₂-FeSe₂/CNT (anode) with state-of-the-art Pt/C (cathode) (c).

Fig. S8 Core-level XPS spectra of Co 2p (a), and Fe 2p (b) for the CoSe₂/CNT and FeSe₂/CNT samples, respectively.

Fig. S9 Voltammograms of $CoSe_2/CNT$ (a), $FeSe_2/CNT$ (b), $CoSe_2$ -FeSe_2/CNT (c) and $CoSe_2$ -FeSe₂/CNT (d) for OER in alkaline electrolyte.

Calculation of Faradaic Efficiency: In general, the amount of oxygen (O_2) evolved can be estimated from the obtained gas volume in a water-drainage set-up by applying the ideal gas law. While, the theoretical quantity of O_2 can be calculated through Faraday law based on the fixed current. Therefore, by using this data one can evaluate the Faradic efficiency by the following equation;

Faradaic Efficiency =
$$\frac{V/V_m}{N_{O_2}}$$
 X 100S₁

Where, 'V' is the volume of gas experimentally evolved during the reaction, ' V_m ' is the molar volume (22.4 L mol⁻¹, at STP) and ' n_{O2} ' is the theoretical number of moles of O_2 produced.

The theoretical number of moles of O_2 evolved can be obtained by the following equation;

$$n_{O_2} = \frac{Q}{nF} \cdots s_2$$

Where, 'Q' is the total quantity of electric charge (C), 'F' is the Faradaic constant (96485 C mol⁻¹), and 'n' is the number of electrons transferred during the process (OER; 4 moles of electrons per mole of O_2)

Fig. S10 Water oxidation process of the electrolyzer derived from $CoSe_2$ -FeSe₂/CNT material in 1.0 M KOH at a constant current density of 50 mA cm⁻² for 2 h (photographs of lab-made gas collectors at the beginning (Time = Zero minutes) and up to 2 h with 30 minutes interval).

Fig. S11 The SEM image (a), detailed Se 3d (b), Co 2p (c), and Fe 2p (d) XPS corelevel spectra of CoSe₂-FeSe₂/CNT after 20 h *i-t* test in 1.0 M KOH electrolyte.

Fig. S12 TEM (a), HRTEM images of CoSe₂-FeSe₂/CNT after the chronoamperometry test (b-d).

Materials	η mV@10 mA/cm ²	Tafel slope (mV/ dec)	(<i>i-t</i>) (h)	Ref.
CoSo FoSo /CNT	248 (OER)	36.0	20	This work
Cose ₂ -rese ₂ /CN1	1.59 V (OWS)	-	-	I IIIS WULK
CoSe ₂ /FeSe ₂ @C	291	62.0	~25	1
CoSe@FeSe ₂	281	34.3	12	2
FeSe ₂ @CoSe ₂ /rGO	260	38.2	6	3
CoSe ₂ /FeSe ₂ DS- HNCs	240	44	50	4
CoSe ₂	320	40.1	15	5
Co _{0.75} Fe _{0.25} -Se/NF	246	41.4	40	6
FeCoMo-Se	264	33	100	7
O–CoSe ₂ -HNT	252	62	35	8
CoSe ₂ @NC	310	59	-	9
FeCoSe ₂ /Co _{0.85} Se	330	50.8	12	10
(Ni,Co)Se ₂	278	65	20	11
Co ₃ Se ₄ /FeSe ₂	280	51	24	12

Table S1. Comparative overpotential and Tafel slope values of TMDs materials fabricated recently with CoSe₂-FeSe₂/CNT.

C = carbon nanorod; DS-HNCs = double-shelled hollow nanocuboids; rGO = reduced Graphene Oxide; NF = Nickel Foam; O- = Oxygen rich; HNT = hierarchical nanotubes; NC = N-Doped-carbon.

CoSe ₂ -FeSe ₂ /CNT		CoSe ₂ -Fe	CoSe ₂ -FeSe ₂ /CNT		
778.91	781.39	713.58	716.61		
Co-Se	C0 ²⁺	Fe ²⁺	Fe ³⁺		
779.84	781.60	713.20	715.56		
CoSe ₂ /CNT		FeSe ₂	FeSe ₂ /CNT		

Table S2. The comparison of the XPS characteristic peaks of CoSe₂-FeSe₂/CNT, CoSe₂/CNT and FeSe₂/CNT.

Note: the values in the table are unified in eV.

References:

- W. Li, Y. Niu, X. Wu, F. Wu, T. Li, and W. Hu, Heterostructured CoSe₂/FeSe₂ Nanoparticles with Abundant Vacancies and Strong Electronic Coupling Supported on Carbon Nanorods for Oxygen Evolution Electrocatalysis, *ACS Sustainable Chem. Eng.* 8 (2020) 4658–4666.
- Y. Zhang, J. Xu, L. Lv, A. Wang, B. Zhang, Electronic engineering of CoSe/FeSe₂ hollow nanospheres for efficient water oxidation, *Nanoscale*. 12 (2020) 10196–10204. doi:10.1039/d0nr01809k.
- G. Zhu, X. Xie, X. Li, Y. Liu, X. Shen, K. Xu, Nanocomposites Based on CoSe₂-Decorated FeSe₂ Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction, *ACS Appl. Mater. Interfaces* 10 (2018) 19258–19270.
- C. Xu, Q. Li, J. Shen, Z. Yuan, J. Ning, Y. Zhong, et al., A facile sequential ion exchange strategy to synthesize CoSe₂/FeSe₂ double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction, *Nano Res.* 11 (2019) 10738–10745. doi:10.1039/c9nr02599e.
- C. Zhang, B. Tang, X. Gu, L. Feng, Surface chemical state evaluation of CoSe₂ catalysts for the oxygen evolution reaction, *Chem. Commun.* 55 (2019) 10928–10931.

- K. Guo, Z. Zou, J. Du, Y. Zhao, B. Zhou, C. Xu, Coupling FeSe₂ with CoSe: an effective strategy to create stable and efficient electrocatalysts for water oxidation, *Chem. Commun.* 54 (2018) 11140–11143. doi:10.1039/c8cc06628k.
- Y. -J.Tang, Y. Wang, K. Zhou, In situ oxidation transformation of trimetallic sacrificing MoSe₂ for efficient water oxidation, *J. Mater. Chem. A* 8 (2020) 7925–7934.
- B. Jia, Z. Xue, Q. Liu, Q. Liu, K. Liu, M. Liu, Hierarchical nanotubes constructed from CoSe₂ nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction, *J. Mater. Chem. A.* 7 (2019) 15073–15078. doi:10.1039/c9ta03606g.
- J. Lu, S.Wang, C. Ding, W. Lv, Y. Zeng, N. Liu, H. Wang, Q. Meng, Q. Liu, Metal organic frameworks derived CoSe₂@N-Doped-carbon-nanorods as highly efficient electrocatalysts for oxygen evolution reaction, *J. Alloys Compd.* 778 (2019) 134–140.
- K. Zhang, M. Shi, Y. Wu, C. Wang, Constructing FeCoSe₂/Co_{0.85}Se heterostructure catalysts for efficient oxygen evolution, *J. Alloy. Compd. Alloy.* 825 (2020) 154073. doi:10.1016/j.jallcom.2020.154073.
- W. Shen, X. Guo, J. Sun, S. Xu, J. Xu, Prussian blue analogues derived binary nickel-cobalt selenide for enhanced pseudocapacitance and oxygen evolution reaction, *Vacuum*. 170 (2019) 108965. doi:10.1016/j.vacuum.2019.108965.
- J. Wan, W. Ye, R. Gao, X. Fang, Z. Guo, Y. Lu, D. Yan, Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution. *Inorg. Chem. Front.* 2019, *6*, 1793–1798.