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Supplementary Methods

Model selection. The accuracy of machine learning (ML) models relies on
appropriate algorithm, thus selecting out the best model from a series of available ML
models is necessary. For ML classification, six classifiers are considered: gradient
boosting classifier (GBC), support vector machine (SVM), AdaBoost classifier,
random forest classifier (RFC), stochastic gradient descent classifier (SGDC), and
decision trees classifier (DTC). For ML regression, six regressors are considered as
well: gradient boosting regressor (GBR), kernel ridge regressor (KRR), bagging
regressor, random forest regressor (RFR), kernel neighbors' regressor (KNR) and
decision trees regressor (DTR).! The same training & test sets are applied to train
each classification (regression) model. The same model evaluation indexes are
utilized to evaluate fairly the performance of classification (regression) model. The
GBC model shows the best performance among these six classification models, and

the most appropriate regression model is GBR model.

Model evaluation for classification and regression algorithms. Model evaluation
indexes are essential for measuring the performance of ML models. ML classification
and regression models correspond to different model evaluation indexes. Four
evaluation indexes (area under curve (AUC), accuracy, precision and recall) are
applied for classification models and three different evaluation indexes (coefficient of
determination (R?), mean square error (MSE) and mean absolute error (MAE)) are
used for regression models.

The classification models produce the prediction probability for samples. The
classification threshold is set to 0.5 in this work, and the prediction probability results
of samples are compared to the pre-defined threshold. The prediction probability
results correspond to the probabilities that samples belong to positive class (i.e.
perovskite and perovskite with bandgaps smaller than 0.2 eV) or negative class (i.e.
non-perovskite and perovskite with bandgaps larger than 0.2 eV). Therefore, samples

with prediction probability results larger than 0.5 are classified into positive class, and
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samples with prediction probability results less than 0.5 are classified into negative
class.

According to the classification results, the count of positive samples predicted
correctly is defined as true positive (TP), and the count of positive samples predicted
falsely is defined as false positive (FP). The count of negative samples predicted
correctly is defined as true negative (TN), and the count of negative samples predicted
falsely is defined as false negative (FN). By calculating the values of TP, FP, TN and
FN, we obtained the confusion matrix, which represents the counts of the predicted

classes versus the true classes of test set. The confusion matrix is shown as follows:

Predicted positive  Predicted negative

True positive TP FN

True negative FP TN

The true positive rate (TPR) and false positive rate (FPR) are calculated based on

TP, TN, FP and FN.

TP

TPR = TP+FN (1)
FPR = —— (2)
TN+FP

The receiver operating characteristic (ROC) curve can be drawn using TPR and
FPR as coordinates, and is often used to measure the performance of classification
models. For ROC curves in this work, the probability of positive prediction is the
number of positive prediction times derived by total number of times after 100
executions. When comparing the performance of different classification models, if the
ROC curve of one model is completely below the ROC curve of the other, it means
that the performance of the latter model is better than the former. If the ROC curves of
two classification models intersect, the comparison is difficult. Thus the more
appropriate model evaluation index is the AUC value. The higher AUC value
correspond to the better performance of classification model. The AUC value of a
classification model without learning algorithm is equal to 0.5, and the AUC value of
the perfect classification model is equal to 1.

Accuracy is the proportion of correctly classified samples among all samples. In
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general, the better classification model has the higher accuracy. Accuracy is defined as

follows:

TP+TN

Accuracy - TP+TN+FP+FN (3)
Precision is the proportion of true positive samples in predicted positive class.

Precision is defined as follows:

TP
TP+FP (4)

Precision =

Recall represents the ability for identifying positive samples of classification

models. Recall is defined as follows:

TP
TP+FN

Recall =

5)
The above indexes are used to evaluate the performance of classification models,
and three different indexes are chosen for evaluating the performance of regression
models.
R? is the proportion of the variance in the dependent variable that is predictable
form the independent variable. R? is defined as follows:

Zi(yi”“e—y?”d)z

R?=1-— 5
—t
Zi(yi”“e—yi”‘e)

(6)

pred

Where y{™¢ are the true values, and y;

are the predicted values. The
predicted values of the perfect regression model are equal to true values, thus the
value of R? is equal to 1.

Mean square error (MSE) represents the average squared difference between the

predicted values and true values. MSE is defined as follows:

1 d)?2
MSE = S 3N, (yrue — yPred) (7)
Mean absolute error (MAE) represents the arithmetic average of the absolute

errors between predicted values and true values. MAE is defined as follows:

true pred

1
MAE = Ezl\]:l Yi Y

(8)
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Hyper-parameters selection. After model selection, hyper-parameters are optimized
by applying a global search algorithm based on the simulated annealing algorithm.?
Hyper-parameters are optimized before training ML models, and optimized
hyper-parameters can improve the performance of ML models. We selected 7 initial
hyper-parameters for GBC and GBR models, respectively. For GBC model,
max_depth is in the range of 2~30, n estimators is in the range of 40~200,
learning rate is in the range of 0.005~0.5, subsample is in the range of 0.5~1,
min_child weight is in the range of 0.5~10, the random_state seed is set to 42, and
the loss function is set to logistic regression. For GBR model, max_depth is in the
range of 1~200, n_estimators is in the range of 100~500, learning_rate is in the range
of 0.001~0.5, min_sample leaf is in the range of 1~50, max_features is in the range
0f 0.01~1, the random_state seed is set to 42, the range of loss function is set to [least
squares (Is), least absolute deviation (lad), the combination of Is and lad (huber),
quantile regression (quantile)]. During the optimization process, ML models with the

best hyper-parameters can achieve the maximum accuracy.

Last-place elimination feature selection procedure. To search the most relevant

% is introduced to

features, a “last-place elimination” feature selection procedure®
GBC algorithm and GBR algorithm. In this work, the initial feature set is consisted of
87 features relating to polarizability, ionic radii and electronegativity. In the first step,
87 features are ranked according to the relative importance after training model. Then
the feature at the last position is removed, and the remaining 86 features consist a new
feature set. Next, the performance of model with new feature set is evaluated, and the
above step is repeated until only two features left. Finally, the accuracy of the model

at each step is analyzed, and the feature set corresponds to the inflection point is

selected as the optimized feature set.

Supplementary Notes
Note S1. The ionic polarizability of A-site ions in Table S1 is obtained from
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Amsterdam Density Functional program package (ADF2013).>* The ionic radii of A-,
B-, B'- and X-site ions and electronegativity of B-, B'- and X-site ions are obtained

from the python Mendeleev package 0.5.1.°

Note S2. Among all DHOIPs data with the chemical formula A;BB'X¢ in literature,
we only selected compositions that satisfy the charge neutrality condition and
Pauling’s valence rule, resulting in the number of DHOIPs in training & test sets
reduced to 2274. Then all of them are labeled ‘perovskite’ or ‘non-perovskite’. The
criterion is based on (i) Oy_g_x > 160°; (i) RPL /RT3 > 2/3. Where Oy_g_x
represents the angle of the X-B-X bonds, RS and RI3X represent the minimum

length and the maximum length of B-X bonds, respectively.

Note S3. To obtain geometric boundaries for double perovskite structure, the
geometric limits using rigid sphere model are derived. The generalized Goldschmidt’s
parameters are introduced as follows: (i) the average octahedron factor: i =

(IRg + IRg,)/21Ry, (ii) the octahedron mismatch: Ap = (IRg — IRg,)/21Ry, (iii) the

IRA+IRx

6
VZ{[(IRp+IRp)/2+IRx]?+(IRp—IRp,)? /4}1/%’ Where IR,

generalized tolerance factor: t =

IRg, IR and IRx represent the ionic radii of A-, B-, B'- and X-site ions, respectively.
When IRg is equal to IRg, X-site ions sit at the midway between B- and B'-site

ions (Figure S3a). When IRg is different from IRg, X-site ions shift the distance of
1/2|IRg — IRy, | from midway O toward large ions between B- and B'-site ions.

This offset helps to relieve the lattice strain caused by size mismatch and to reach the
overall electrostatic energy of double perovskite (Figure S3b).” The larger difference
between IRg and IRg, the larger the distance of offset. The octahedron limit
corresponds to the extremal situation wherein two adjacent X-site ions in the same
octahedron are tangent to each other (Figure S3c). In this situation the distance

between centers of B'-site ions and X-site ions satisfies the condition IRg, =

(V2 — 1)IRy. Then both sides of equation are divided by Rx and 1 — A = (vV2— 1)
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is obtained. Therefore, the ionic radii must satisfy the condition @ — Ap = (V2 —1).

If @—Au<(vV2—1), the B/B'site ions cannot touch six adjacent X-site ions,

bringing the instability from reduced coordination number of B/B'-site ions.
The stretch limit is also considered, which corresponds to the extremal situation
wherein A-site ion is so large that it is tangent to all twelve X-site ions around the

octahedron cavity (Figure S3d). The distance between A-site ions and midway O is

g(IRB, + 2IRx + IRg), and the distance between X-site ions and midway O is
%(IRB —IRg,). According to Pitagoras’ theorem to the triangle, the boundary

condition (IR, +IRx)? = %(IRB —IRg,)? + %(IRB, + 2IRx + IRg)? is obtained.

After combining this condition to the generalized tolerance factor, the geometric
boundary t = 1 is obtained. For t > 1, A-site ions are too large to maintain
three-dimensional perovskite structure, thus perovskites are likely to form low

dimensional structures.

Note S4. To validate the generalization ability of the bandgap regression model, we
randomly divided the training & test sets (525 DHOIPs) into two subsets based on
combinations of B and B'-site cations. In detail, each DHOIPs corresponding to the
same combination appears in the same subset. Then one subset (498 DHOIPS) is used
to train the regression model, while another subset (27 DHOIPs) contains 6
combinations, and MDHOIPs corresponding to these combinations are labeled as
out-of-sample systems, e.g. Ag&In, In&Sb, Ag&Sbh, Au&lin, Sn&Pb, and As&lIn.
Subsequently, two models are utilized to predict the bandgap values of these
out-of-sample systems: ML model trained by 525 DHOIPs (model-1), and ML model
trained by 498 DHOIPs (model-2). The comparison between ML-predicted and
DFT-calculated results is listed in Table R1. For model-2, the maximum error between
ML-predicted and DFT-calculated bandgap values is 0.228 eV, and most of
MDHOIPs have errors within 0.15 eV, which is slightly higher than that of ML

model-1. Overall, our ML model shows well generalization ability on these
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out-of-sample systems.

Note S5. In this work, the decomposition energy (AH) of MA,GeSnl4Br; is calculated

through the pathways as follows:

MA;GeSN14Br; - Z(2MAI+SnI;+Gelo) +-(2MABr+SnBra+GeBr,)
MA;GeSN1Br; - Z(MASNIz+MAI+Gels)+=(MASNBra+MABr+GeBry)

MA;GeSN14Br; - S(MAGels+MAI+Snl;)+-(MAGeBrs+MABr+SnBr,)

The AH of AxInB**X,X'; (i.e., MA:InBil,Br, and FA;InSbBr,Cls) is calculated

through the pathways as follows:

AoINB™ X4X's » Z2AXHINX+BXs)+=(2AX+INX'+BX'3)
AoINB™ X X' > J(2AXHNX5+-BX5+-B)+>(2AX +INX'3#+-BX's+2B)

3+ , 2,1 1 1.1 i 1 ' r
A InB7 Xy X' — E(EAX+EA382X9+InX)+§(EAX +EA382X o+InX )

3+ , 2,3 1 207,13 A 1 ' 12
A2|nB X4X 2= E(EAX+EA3B2X9+IHX3+§B)+§(EAX +gA3BzX 9+IHX 3+5B)

.2 1 1 200,11 vy Iawr Inwr 2

A2|nB3+X4X 2= E(EASIHZX9+EAX+§BX3+§B)+§(EA3IHZX 9+EAX +§BX 3+5B)

AoINB™ X4X's > Z(CAsInzXo+zA3B2Xo+2B)+=(CAsInzX s+-AsBX's+2B)

S9



Supplementary Figures
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Figure S1. 11 candidates in the prediction set are obtained based on MA;AgBiIlg in

training&test sets.
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Figure S2. Flowchart and results of last-place elimination feature selection procedure.
(a) Feature engineering framework combined with “last-place elimination” method.
Optimized feature set of (b) perovskite structure formability classification, (c)

bandgap classification, and (d) bandgap regression.
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Figure S3. Representation for conventional cell of double perovskites. Red, orange,
pink and grey spheres represent A-site ions, spheres represent B-site ions, B'-site ions
and X-site ions, respectively. Schematic diagram corresponds to the situation wherein
B- and B'-site ions possess (a) same ionic radii and (b) different ionic radii. Schematic
representations for (c) the octahedron limit and (d) the stretch limit of double

perovskites.
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Figure S6. Selection of training & test sets corresponds to three ML models with

different target properties. Preparing for model training and test, the training set and

test set for each model are divided according to the proportion of 80% and 20%.
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(b) MA,InBil,Br,

Figure S11. Band decomposed charge density of (a) MA,GeSnl4Br,, (b)
MAINBil,Bry, (€) FA2INShBr,Cly, and (d) MA,AgINBr,Cls.
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Supplementary Tables

Table S1. Different elements with common valence states.

Valence elements
+1 Ag, Au, Cu, Hg, In, Ti
o Ag, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ge, Hg, Mg, Mn, Ni, Pd, Pb,
Pt, Sn, Sr, Ti, V, Zn
2 Al, As, Au, B, Bi, Co, Cr, Fe, Ga, In, Ir, Mn, Mo, N, Nb, Ni, Rh,

Ru, Sh, Sc, Ta, Ti, V, Y
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Table S2. Eighty-seven initial features with description.

Feature Description

Pa lonic polarizability of the A-site cations

By X8y xx1, xx2 and yxs Electronegativity of the B-, B'-, X3, X, and Xs-site ions

IRA, IRg, IRE, IRx1, IRx> and IRxs3 lonic radii of the A-, B-, B'-, X1, X5 and Xz-site ions

Sum of two ionic radii

IRi+j

IRi; Difference between two ionic radii

IR Ratio between two ionic radii

Xi] Sum of electronegativity of two ions

Xi-j Difference between electronegativity of two ions
Xili Ratio between electronegativity of two ions
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Table S3. Comparison between DFT-calculated and ML-predicted results.

System ELT (eV)? E' (eV) ® EsM (eV) ®
FAInSbBr,Cl, 0.985 1.013 1.011
MA2AGINBrCl; 0.949 0.860 1.177
MA2AgGSbBI,Cl; 1.214 1.316 1.096
MA2AUINBr,Cl; 1.757 1.609 1.613
FA,SnPbBr,Cl, 1.507 1.442 1.401
MA2ASINCll; 0.712 0.786 0.826

* E;”7T represents DFT-calculated bandgap values, and E/M and E M-? represent

ML-predicted bandgap values obtained by model-1 and model-2, respectively. In

which model-1 is trained by all 525 DHOIPs, and model-2 is trained by 498 DHOIPs.
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Table S4. Comparison between bandgaps from the database and our DFT results.

System Database (eV) Our PBE (eV)

MAPbI3 1.74 1.74
MA,AgBIls 1.34 1.23
Cs,AgBiClg 1.80 1.82
MA2AgSbls 1.04 0.92
Cs,AgInClg 1.01 1.00
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