In situ injection of dual-delivery PEG based MMP-2 sensitive hydrogels for enhanced tumor penetration and chemo-immune combination therapy

Jianqin Yan^{a,b}, Zhuangzhuang Zhang^b, Xiaohui Zhan^b, Keqi Chen^c, Yuji Pu^b, Yan Liang^{a*}, Bin He^b

a Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China

b National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

c Department of Clinical laboratory, Qingdao special servicemen recuperation center

of PLA navy, Qingdao 266021, China

* To whom correspondence should be addressed, E-mail: <u>liangyan072@foxmail.com</u> (Y. Liang)

Fig. S1. Structure of 4 arm-Mal-PEG (A) and MMP-2 sensitive CC-12 peptide (B), (C) Schematic of PEG hydrogels formation, (D) FTIR spectrum of 4 arm-Mal-PEG and MMP-2 sensitive PEG hydrogels.

Fig. S2. (A) Morphology and SEM images of 5% PEG hydrogels. (B) Dynamic complex viscosity of MMP-2 sensitive PEG hydrogels (5% and 7%, w/v) as a function of angular frequency for the PEG hydrogels. (C) Live/dead assay of L929 cells treated with 7.5% PEG hydrogels. (D) The cytotoxicity of gelators incubated with L929 cells and 4T1 cells. (E) The image of 7.5% PEG hydrogels upon treatment with MMP-2 (200 ng/mL). (F) Morphology images of Gel@DOX and Gel@PNT/DOX. The rheological property (G) and dynamic complex viscosity (I) of Gel@DOX and Gel@PNT/DOX.

Fig. S3. (A) Gel retardation assays of TDNs. DNA marker, line 1: S1 + S2, line 2: S1 + S2 + S3, and line 3: TDNs. (B) Gel retardation assays of NT.

Fig. S4. The size (A) and zeta potential (B) of NT and NT/DOX

Fig. S5. The CLSM images and fluorescence intensity profile analysis of 4T1 cells treated with

TDNs and NT. (TDNs was modified with Cy5, green. The scale bar represents 25 $\mu m)$

Fig. S6. *In vitro* cell viability of TDNs or NLS-TDNs incubated with L929 (A) and 4T1 (B) cells for 48 hours. The anticancer activity of free DOX, TDNs/DOX, NT/DOX against 4T1 cells (C).

Fig. S7. (A) The synthetic route of cross-linked PEI (PSP) and the effect of disulfide bond reduction by DTT. (B) Gel retardation analysis of NT complexed with PSP at various N/P ratios.

Fig. S8. The CLSM images of 4T1 cells treated with free DOX, NT/DOX, PNT/DOX for 4 h. The scale bar represented 25 μ m.

Fig. S9. Schematic illustration to show the experimental route for *in vivo* antitumor efficacy studies.

Fig. S10. Histological analysis of different organs of 4T1 tumor-bearing mice. Red circles indicated inflammation, red arrow indicated bleeding or other lesions (scale bars represent 100 μ m).

Fig. S11. (A)In vitro measurement of ATP production in 4T1 cells. (B)The CLSM images of CRT or HMGB1 staining of tumor (scale bars represent 50 μ m).

ssDNA	Sequence (5'-3')
S1	TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC
S2	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA
S3	TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC
S4	TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGG ACCCTCGCAT
S1-N ₃	N ₃ -
	TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC

 Table S1. DNA oligonucleotides used in TDNs.