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1. Theoretical Analysis

In thermodynamic treatment of a solid crystal with only the consideration of mechanical and
thermal vibration (phonon) energies and without considering electron contributions, the
Helmholtz free energy consists of two partsi*-®l, the potential free energy FP/ and the vibration

free energy F¥/ (or thermal energy), as given by
Ff = FpS + FvI, (S1)

If the potential free energy at temperature of absolute zero degree is used in the study of thermal
properties of a system under constant volume, the potential free energy will be independent of
temperature. The vibration free energy and internal energy at temperature T take the following
form [4:
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respectively, where A = 1.05457 x 10734J's is the reduced Planck constant, a){p is the
angular frequency, i denotes the wavevector, p is the polarization index, and kg is the

Boltzmann constant.

Consider an ideal crystalline layer under biaxial in-plane deformation and without any shear
and with the traction free condition along the layer plane normal direction. The biaxial strain is

defined by ¢ = lnLi, where L, and L are the dimensions before and after the deformation,
0

respectively. In general, the isothermal biaxial stress a{f at temperature T in Lagrangian

coordinates can be calculated from

oFf
de

oFPS

oFvS
+
de

2Vl =
ot de

(S3a)

T T T

where V is the volume of the studied film. We introduce Grineisen parameters y®xx, y®»,
and y*®# under normal strains &, &,,,and &,,, respectively, and the hydrostatic Grineisen
parameter y¢ = %(ysxx + y®&» +y®=2) under volumetric strain e =&, + &y, +¢&,, by
following hydrostatic stress definition of o, = %(axx + 0y, + azz), where oy, 0y, and o,,
are normal stresses. Under biaxial deformation, we have o,, =0 and oy, = 0,y = al.

Similarly, the Grineisen parameter under biaxial deformation is y/ =y = y®» and
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= —y/, where o/ is the effectively averaged frequency under biaxial

deformation. Thus, the explicit expression of Eq. (3a) is
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If no external stress is applied on the studied system, we shall have o{f =0 and
Vet = ullys (S3¢)

where ?7¢i™ = gP/ and P/ is the biaxial modulus of the film. The strain &/ under the
condition of 07( = 0 is called the thermal biaxial strain. As discussed in the previous work ],
zero K is usually and inexplicitly taken as the reference temperature. When thermal expansion
is considered, the studied system under stress-free condition will change its volume if

temperature varies.

Following the Gibbs sharp surface approach, the thermal internal energy can be divided into

the core and surface two parts, i.e.,

Ur = vud + 24ub”, (S4a)

v,C

where u;“ and u;® denote the thermal energy density per unit volume of the core and the
thermal energy density per unit area of the surface, respectively, A is the surface area and the

number of 2 is added here to represent two surfaces of the film. Eq. (S4a) can be rewritten as

2
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where h is the film thickness and u?’ = u%° + %uT is the thermal energy density per unit

volume of the film. Combining Eq. (S4b) with Eq. (S3c) gives
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Partially differentiating Eq. (S4c) with respect to temperature under constant volume yields
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where a{ is the Thermal Expansion Coefficient (TEC) of the film, cf = a;; |y and ci =

ou

a: |, are the heat capacity density per unit volume of the core and the heat capacity density
per unit area of the surface, respectively. From the analysis, we have the heat capacity density

per unit volume of the film

cf =t + Ecs (S4e)
T T h T

As described in the previous works [**-281 when the stress-free bulk counterpart is taken as the
reference, the in-plane dimension of a thin film will be deformed and the initial deformation is
caused by isothermal relaxation without any external loads, which changes the film in-plane
length and the length change depends on the film thickness. Thus, the equilibrium length called

the initial length L of a film at temperature T is given by
ni = Lexp(el), (S5a)

with LY being the length before relaxation as that in the stress-free bulk counterpart and i
is the initial strain, which is expressed by
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where o is the surface eigenstress at temperature T, Y£ and Y$ are the core and surface

biaxial moduli, respectively.



If the thermodynamic properties of a studied sample at temperature T, are taken as the
reference, we are able to calculate the change in the thermodynamic properties induced by
temperature change AT =T — T,. When the temperature varies from T, to T, the thermal

strains of the film and the core are given respectively by
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Based on the Varshni equation ®, Zhou et al.[l proposed a linearly temperature-dependent

biaxial Young’s modulus when temperature is higher than 100 K, which is given by

P Y7 kS
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denote “film”, “core”, and “surface”, respectively, and

({4
S

where the superscripts “f”, “c”, and
k is the thermal coefficient of biaxial Young’s modulus. The same simplification schemel”)

leads to the size-dependent TEC of the film
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Substituting Eqg. (S6a) into Eq. (S4d) leads to
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We may further assume that the heat capacity densities of c¢f and ¢} be constants, which is

available when the temperature is above the Debye temperature of a metal in study, and then

simplify Eq. (S6c) to

_ V7 ks 2 2 oy’
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Eq. (S6d) indicates that the film Grineisen parameter is a linear function of AT,
y' =y +v]ar, (57a)

With Eq. (S7a), Eq. (S6d) is rewritten as
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Eq. (S7b) yields
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Egs. (S7a, c, d) are corresponding to Egs. (1a-c) in the main text, respectively. Egs. (S7c, d)

show that both y(f and ylf depend on the film thickness, thereby the Grineisen parameter of
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a film is thickness- and temperature-dependent. For sufficiently thick films, Yz > 2%, cc>»

%cs, k¢ > 2%5, and af — af, the thickness-dependence will disappear.

In the above analysis, we assume the heat capacity densities of the core and surface be constant
and independent of temperature. If the change of volume with temperature is considered, the
heat capacity densities of the core and surface will change with temperature. The film volume

Vr attemperature T is expressed with the thermal expansion coefficient a/ as
Vr =V, (14 3a74T), (S8a)

where Vp, is the volume at temperature T,. In statistic physics, the core thermal internal
energy is described by the product of atom number N of the core and the thermal internal energy
per atom, @Y. Similarly, the surface energy can be estimated by the product of the gained

energy per broken bond, @Y, times the number M of broken bonds in one surface. Then, the

thermal internal energy of a film is given by
Uy’ = Nav< + 2Mavs, (S8b)
Consequently, the thermal capacity under constant volume of the film, €7, is calculated to be

Cf = N¢é€ +2Més, (S8¢c)

~

where ¢€ is the thermal capacity under constant volume per atom and ¢* is the heat capacity
under constant volume per broken bond. In the following analysis, we assume both ¢¢ and

¢¢ be constants, independent of temperature and then rewrite Eq. (S6¢) as
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The term Vicc is actually the heat capacity density per unit volume at temperature Ty, cr,.
To

In analogy, we introduce the heat capacity density per unit surface area at temperature Ty, cz,.

With ¢z, and cz,, Eq. (S8d) is rewritten as
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Eq. (S9a) requires that ¥/ takes the form of
v =yl +y/ar +v](aT)?, (S9b)

Combining Eqg. (S9b) and Eqg. (S9a) gives
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Eq. (S9c) yields
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Egs. (S9b, S10a-c) are corresponding to Egs. (2a-d) in the main text, respectively. Egs. (S10a,
b, ¢) indicate again that all y{, ylf, and yzf depend on the film thickness. In brevity, the
theoretical analysis gives the explicit equations of the thickness- and temperature-dependent
Grineisen parameter and Grineisen equation. The difference between the two theoretical
analyzes is how to approximately treat the core heat capacity density per unit volume and the
surface heat capacity density per unit surface area. In the temperature linear dependence of the
Grineisen parameter, the values of core and surface heat capacity densities are taken at highest
temperature T, lowest temperature T,, or a temperature between them in the temperature range
of interest, while in the temperature quadratic dependence of the Grineisen parameter, the

values of core and surface heat capacity densities are taken at temperature T,.



2. Calculation results and curve fitting
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Figure S1: Thermal strain (a), biaxial Young’s modulus (b) of FCC Ni, Cu, and Au bulk
crystals versus temperature. Points are simulation results, and the solid lines denote the

perfect linear fittings with the analysis.

Fig. S1(a) shows the thermal strain versus temperature, indicating that the Thermal Expansion
Coefficient (TEC) of the bulk Ni, Cu, Au with temperature increasing, and the slopes denote
the thermal expansion coefficients of the bulk crystal. Fig. S1(b) shows the bulk biaxial
Young’s modulus decrease linearly with temperature increasing. The slopes between the bulk
biaxial Young’s modulus and temperature give the value of the thermal coefficient of the bulk

biaxial Young’s modulus k¢, as listed in table 1.
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Figure S2: Initial strain of thin films versus temperature and thickness, where the solid lines in

(a,c,e) are linear fittings of Eq. (S5a), and the curves in(b, d, f) are fittings of Eq. (S5b).

Fig. S2(a, c and €) show the initial strains versus temperature, where the solid lines represent
the perfect linear fitting of the results, meaning the independence between the Thermal

Expansion Coefficient (TEC) a/ and temperature for a given thickness film. Fig. S2(b, d and
11



) show the initial strain versus thickness for a given temperature. Fitting the simulation results
with Eq. (S5b) gives the surface eigenstresses and surface biaxial Young’s modulus of the films

at each of the simulated temperatures.
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Figure S3: Surface biaxial Young’s modulus, fitted out by using Eq. (S5b), as a function of

temperature.

Fig. S3 shows the surface biaxial Young’s moduli of the films versus temperature, which also
decreases linearly with increasing temperature, similar to the bulk biaxial Young’s modulus.
The slopes between surface biaxial Young’s modulus and temperature give the value of the

thermal coefficient of the surface biaxial Young’s modulus k?, as listed in Table 2-4.
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Figure S4: The nominal biaxial Young’s moduli of thin films versus temperature and

thickness, defined as ¥/ = Y¢ + %?5.

Fig. S4(a,c,e) show the film nominal biaxial Young’s moduli ¥/ decrease linearly with
temperature increasing for a given thickness film, which is similar to ¥¢ and Y*, and
consistent with the simplified Varshni equation. Fig. S4(b,d,f) show the film nominal biaxial

Young’s moduli ¥/ are also dependent on thickness. For a given temperature, the nominal
13



biaxial Young’s moduli Y/ decrease with thickness increasing, and the rate of decreasing
slows down gradually. With thickness increasing, nominal biaxial Young’s moduli ¥/ will
approach the bulk biaxial Young’s moduli Y¢ gradually, which is because the effect of the

surface will reduce with increasing thickness, consistent to the thermo-mechanical properties

in thin films.
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Figure S5: The dimensionless film TEC a//a¢ versus thickness.

The dimensionless film TEC a/ /a€ is the ratio of the Thermal Expansion Coefficient (TEC)
of the film and of the bulk counterpart. Fig. S5 shows the dimensionless film TEC a//a‘
versus thickness. The dimensionless TEC approaches one with the thickness increasing,
meaning that TEC of the film will approach the corresponding bulk value when the film

thickness is sufficiently large, which agrees to Eq. (S6b).
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