Supporting Information

A High-Performance Free-Standing Zn Anode for Flexible

Zinc-Ion Batteries

Chenxi Gao^{1,2†}, Jiawei Wang^{1†}, Yuan Huang^{3*}, Zixuan Li¹, Jiyan Zhang¹, Haoze Kuang², Shuhao Chen², Zanxiang Nie⁴, Shuyi Huang², Wei Li², Yubo Li², Shunyu Jin⁵, Yuanjiang Pan⁶, Teng Long⁷, Jikui Luo², Hang Zhou^{1*} and Xiaozhi Wang^{2*}

- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
- 3. School of Microelectronics Science and Technology, Sun Yat-Sen University Guangzhou, PR China
- 4. Zinergy Shenzhen Ltd., Baoan, Shenzhen, China
- 5. Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, China
- 6. Department of Chemistry, Zhejiang University, Hangzhou, China
- 7. Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom

[†] These authors contributed equally.

Corresponding author: huangy723@mail.sysu.edu.cn; zhouh81@pkusz.edu.cn; xw224@zju.edu.cn

Figure S1. Photograph of Zn anode without PVDF-HFP

Figure S2. SEM image of the free-standing Zn anode (80:12:8).

Figure S3. (a) Photograph and (b) SEM image of the free-standing Zn anode (ratio 88:4:8).

Figure S4. (a) Photograph and (b) SEM image of the free-standing Zn anode 88:8:4.

Figure S5. (a) Photograph and (b) SEM image of the free-standing Zn anode (ratio 80:10:10).

Figure S6. Nitrogen adsorption/desorption isotherm of the 88:4:8 and 80:10:10 free-standing

Zn anode.

Figure S7. Rate capability of Zn-MnO2 batteries with free-standing Zn anode (ratio 80:12:8,

80:10:10 and 88:4:8)

Figure S8. SEM images of the zinc foil after (a) 50, (b) 100, and (c) 400 cycles. (d) XRD patterns of the zinc foil after cycling.

As shown in Fig. S8a, some flakes emerged on the surface of the zinc foil after 50 cycles. With increasing cycle number, the flakes became large and the surface of the zinc foil became textured (Fig. S8b and Fig. S8c). After 50 charge/discharge cycles, XRD measurements exhibited typical Zn (JCPDS:4-831) and (Zn(OH)₂)₃(ZnSO₄)(H₂O)₅ (JCPDS:78-246) peaks (Fig. S8d). Those peaks were also detected after 100 and 400 cycles, and the peak intensity of (Zn(OH)₂)₃(ZnSO₄)(H₂O)₅ was significantly increased after 400 cycles. The flakes observed in Fig. S8a-c are related to the formation of (Zn(OH)₂)₃(ZnSO₄)(H₂O)₅. The increasing peak intensity of (Zn(OH)₂)₃(ZnSO₄)(H₂O)₅ during long cycling is consistent with the evolution observed in the SEM images.

 Table S1. EIS fitting results of the Zn-MnO2 batteries with free-standing Zn anode or zinc foil anode.

Samples	$R_{S}(\Omega)$	$R_{ct}(\Omega)$
free-standing Zn anode	3.412	6.576
zinc foil anode	3.885	44.26

Table S2. BET data of the free-standing Zn anode (ratio 88:4:8 and 80:10:10).

Sample	BET surface area $(m^2 g^{-1})$		
free-standing Zn anode (88:4:8)	10.407		
free-standing Zn anode (80:10:10)	10.083		

Table S3. Comparison of Zn-MnO₂ batteries based on free-standing Zn anode with ZIBs

Anode	Cathode	Current collector	Rate performance	Cycling performance	Refs.
Free-standing Zn anode	MnO ₂	none	318.5 mAh g ⁻¹ at 0.3 A g ⁻¹ 138.0 mAh g ⁻¹ at 3 A g ⁻¹	65% after 1000 cycles at 3 A g ⁻¹	This work
flexible Zn/stainless steel mesh composite anode	Layer-expanded V ₂ O ₅ ·2.2H ₂ O	stainless steel	430 mAn g at 0.1 A g ⁻¹ 222 mAh g ⁻¹ at 10 A g ⁻¹	85% after 3000 cycles at 5 A g ⁻¹	1
Zn@carbon fibers anode	MnO ₂	carbon fibers	248.2 mAh g ⁻¹ at 0.3 A g ⁻¹ 119.3 mAh g ⁻¹ at 1.5 A g ⁻¹	86.8% after 140 cycles at 0.3 A g ⁻¹	2
active carbon-modified Zn anode	MnO ₂	stainless steel	none	85.6% after 80 cycles at 0.2 A g ⁻¹	3
Zn/CNT anode	LiMn ₂ O ₄	black paper	none	~46% after 80 cycles at 0.24 A g ⁻¹	4
Zn/active carbon anode	LiMn ₂ O ₄	black paper	none	40% after 210 cycles at 0.24 A g ⁻¹	4
Zn/acetylene black anode	LiMn ₂ O ₄	black paper	none	~63% after 80 cycles at 0.24 A g ⁻¹	4
Zn/rGO anode	Ag ₂ O/rGO	Cu tape	none	~65% after 160 cycles at 42 mA g ⁻¹	5

based on other composite Zn anode in terms of electrochemical performance.

Reference

- 1. J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi, C. Wu, W. Manalastas Jr, J. Ma, W. Fang and Y. J. N. E. Zheng, *Nano Energy*, 2019, **62**, 94-102.
- 2. W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang and Y.-G. J. R. a. Guo, *RSC advances*, 2018, **8**, 19157-19163.
- 3. H. Li, C. Xu, C. Han, Y. Chen, C. Wei, B. Li and F. J. J. o. t. E. S. Kang, *J. Electrochem. Soc.*, 2015, **162**, A1439.
- 4. H. Tao, X. Tong, L. Gan, S. Zhang, X. Zhang, X. J. J. o. A. Liu and Compounds, *Journal of Alloys and Compounds*, 2016, **658**, 119-124.
- D. Ozgit, P. Hiralal, G. A. J. A. a. m. Amaratunga and interfaces, *ACS Appl. Mater. Interfaces*, 2014, 6, 20752-20757.