Supporting Information

The Length of Disulfide Bond-Containing Linkages Impacts the Oral Absorption and Antitumor Activity of Paclitaxel Prodrugs-Loaded Nanoemulsions

Yanlin Gao, Shiyi Zuo, Lingxiao Li, Tian Liu, Fudan Dong, Xin Wang, Xuanbo Zhang, Zhonggui He, Yinglei Zhai *, Bingjun Sun *, Jin Sun *

Figure S1. Structure confirmation of α-PTX-SS-CIT. (A) ¹H NMR. (B) MS. (C) Purity.

¹H NMR (400 MHz, CDCl₃): δ 8.081 (d, 2H, Ar-H, *J*=7.3Hz), 7.720 (d, 2H, Ar-H, *J*=7.4Hz), 7.551 (t, 1H, Ar-H, *J*=7.4Hz), 7.476-7.251 (Ar-H, 10H), 6.218 (s, 1H, 10-H), 6.179 (t, 1H, *J*=8.6Hz, 13-H), 5.934 (dd, 1H, *J*=3.0Hz, *J*=6.4Hz, 3'-H), 5.619 (d, 1H, *J*=7.0Hz, 2-H), 5.440 (d, *J* = 3.5Hz, 1H, H-2', PTX), 5.004 (t, 1H, (CH₃)₂C<u>CH</u>), 4.914 (d, 1H, *J*=8.0Hz, 5-H), 4.382 (dd, 1H, *J*=6.5Hz, *J*=4.2Hz, 7-H), 4.237 (d, 1H, *J*=8.4Hz, 20α-H), 4.139 (d, 1H, *J*=8.4Hz, 20β-H), 4.058 (m, 2H, <u>CH₂OCO), 3.744 (d, 1H, *J*=7.0Hz, 3-H), 3.557 (dd, 4H, <u>CH₂SS<u>CH</u>₂), 3.383 (m, 1H, 6α-H), 2.379 (s, 3H, 4-COCH₃), 2.252 (m, 2H, 14-H), 2.161 (s, 3H, 10-COCH₃), 1.866 (m, 2H, <u>CH₂CH₂OH), 2.072 (t, 1H, 6β-H), 1.781 (s, 3H, 18-CH₃), 1.609 (s, 3H, 19-CH₃), 1.511 (s, 3H, (<u>CH₃)₂CCH, cis-</u>), 1.527 (s, 3H, (<u>CH₃)₂CCH, trans-</u>), 1.468 (m, 2H, (CH₃)₂CCH<u>CH₂), 1.389 (m, 2H, <u>CH₂CH(CH₃)CH₂), 1.185 (s, 3H, 17-CH₃), 1.165 (s, 3H, 16-CH₃), 1.062 (m, 1H, CH₂<u>CH(CH₃)CH₂), 0.835 (d, 3H, CH₂CH(<u>CH₃)CH₂</u>).</u></u></u></u></u></u>

MS (ESI) for α-PTX-SS-CIT [M+H]⁺=1156.43614.

Figure S2. Structure confirmation of β -PTX-SS-CIT. (A) ¹H NMR. (B) MS. (C) Purity.

¹H NMR (400 MHz, CDCl₃): δ 8.082 (d, 2H, Ar-H, J=7.3Hz), 7.694 (d, 2H, Ar-H, J=7.4Hz), 7.545 (t, 1H, Ar-H, J=7.4Hz), 7.471-7.271 (Ar-H, 10H), 7.016 (d, 1H, J=9.2Hz, -NH-), 6.224 (s, 1H, 10-H), 6.159 (t, 1H, J=8.6Hz, 13-H), 5.924 (dd, 1H, J=3.0Hz, J=6.4Hz, 3'-H), 5.622 (d, 1H, J=7.0Hz, 2-H), 5.456 (d, J = 3.5Hz, 1H, H-2', PTX), 5.006 (t, 1H, (CH₃)₂CCH), 4.898 (d, 1H, J=8.0Hz, 5-H), 4.386 (dd, 1H, J=6.5Hz, J=4.2Hz, 7-H), 4.241 (d, 1H, J=8.4Hz, 20α-H), 4.140 (d, 1H, J=8.4Hz, 20β-H), 4.034 (m, 2H, CH₂OCO), 3.753 (d, 1H, J=7.0Hz, 3-H), 2.807 (t, 4H, CH₂CH₂SSCH₂CH₂), 2.600 (t, 4H, CH₂CH₂SSCH₂CH₂), 2.493 (m, 1H, 6α-H), 2.390 (s, 3H, 4-COCH₃), 2.286 (m, 2H, 14-H), 2.160(s, 3H, 10-COCH₃), 2.077 (m, 2H, CH₂CH₂OH), 1.87 (t, 1H, 6β-H), 1.611 (s, 3H, 18-CH₃), 1.529 (s, 3H, 19-CH₃), 1.451 (m, 2H, (CH₃)₂CCHCH₂), 1.359 (m, 2H, CH₂CH(CH₃)CH₂), 1.163 (s, 3H, 17-CH₃), 1.065 (s, 3H, 16-CH₃), 1.255 (m, 1H, CH₂CH(CH₃)CH₂), 0.836 (d, 3H, CH₂CH(CH₃)CH₂). MS (ESI) for β-PTX-SS-CIT [M+H]⁺= 1184.46861

Figure S3. Structure confirmation of γ -PTX-SS-CIT. (A) ¹H NMR. (B) MS. (C) Purity.

¹H NMR (400 MHz, CDCl₃): δ 8.084 (d, 2H, Ar-H, *J*=7.3Hz), 7.686 (d, 2H, Ar-H, *J*=7.4Hz), 7.544 (t, 1H, Ar-H, *J*=7.4Hz), 7.471-7.261 (Ar-H, 10H), 6.876 (d, 1H, *J*=9.2Hz, -NH-), 6.227 (s, 1H, 10-H), 6.194 (t, 1H, *J*=8.6Hz, 13-H), 5.920 (dd, 1H, *J*=3.0Hz, *J*=6.4Hz, 3'-H), 5.626 (d, 1H, *J*=7.0Hz, 2-H), 5.440 (d, *J*=3.5Hz, 1H, H-2', PTX), 5.008 (t, 1H, (CH₃)₂C<u>CH</u>), 4.920 (d, 1H, *J*=8.0Hz, 5-H), 4.390 (dd, 1H, *J*=6.5Hz, *J*=4.2Hz, 7-H), 4.264 (d, 1H, *J*=8.4Hz, 20 α -H), 4.144 (d, 1H, *J*=8.4Hz, 20 β -H), 4.030 (m, 2H, <u>CH₂OCO</u>), 3.758 (d, 1H, *J*=7.0Hz, 3-H), 2.592 (t, 4H, CH₂CH₂CH₂SS<u>CH₂CH₂CH₂CH₂CH₂), 2.517 (t, 4H, <u>CH₂CH₂CH₂CH₂CH₂CH₂), 2.457 (m, 1H, 6 α -H), 2.398 (s, 3H, 4-COCH₃), 2.328 (m, 2H, 14-H), 2.162 (s, 3H, 10-COCH₃), 1.962 (t, 4H, CH₂<u>CH₂CH₂CSCH₂CH₂CH₂CH₂), 1.944 (m, 2H, <u>CH₂CH₂OH), 2.102 (t, 1H, 6 β -H), 1.878 (s, 3H, 18-CH₃), 1.820 (s, 3H, 19-CH₃), 1.613 (s, 3H, (<u>CH₃)₂CCH, cis-</u>), 1.529 (s, 3H, (<u>CH₃)₂CCH, trans-</u>), 1.451 (m, 2H, (CH₃)₂CCH<u>CH₂), 1.359 (m, 2H, CH₂CH(CH₃)CH₂), 0.840 (d, 3H, CH₂CH(CH₃)CH₂).</u></u></u></u></u>

MS (ESI) for γ-PTX-SS-CIT [M+H]⁺=1212.50584

Figure S4. Apoptosis fluorescence micrographs of tumor cells. (A) Saline. (B) Taxol (p.o.) (30 mg kg⁻¹). (C) γ -PTX-SS-CIT NEs (30 mg kg⁻¹). (D) β -PTX-SS-CIT NEs (30 mg kg⁻¹). (E) α -PTX-SS-CIT NEs (30 mg kg⁻¹). (F) α -PTX-SS-CIT NEs (50 mg kg⁻¹). (G) Taxol (i.v., 10mg kg⁻¹).

Figure S5. Proliferation fluorescence micrographs of tumor cells. (A) Saline. (B) Taxol (p.o.) (30 mg kg⁻¹). (C) γ -PTX-SS-CIT NEs (30 mg kg⁻¹). (D) β -PTX-SS-CIT NEs (30 mg kg⁻¹). (E) α -PTX-SS-CIT NEs (30 mg kg⁻¹). (F) α -PTX-SS-CIT NEs (50 mg kg⁻¹). (G) Taxol (i.v., 10mg kg⁻¹).

Figure S6. H&E staining of the major tissues of gastrointestinal tract after treatments. (A)Saline. (B) Taxol. (i.v., 10mg kg⁻¹). (C) α -PTX-SS-CIT NEs (50 mg kg⁻¹). (D) α -PTX-SS-CITNEs (30 mg kg⁻¹). (E) β -PTX-SS-CIT NEs (30 mg kg⁻¹). (F) γ -PTX-SS-CIT NEs (30 mg kg⁻¹).(G)Taxol(p.o.)(30(30mg(31(p.o.)

Figure S7. H&E staining of the major tissues of gastrointestinal tract after treatments. (A) Saline. (B) Taxol. (i.v., 10mg kg⁻¹). (C) α -PTX-SS-CIT NEs (50 mg kg⁻¹). (D) α -PTX-SS-CIT NEs (30 mg kg⁻¹). (E) β -PTX-SS-CIT NEs (30 mg kg⁻¹). (F) γ -PTX-SS-CIT NEs (30 mg kg⁻¹). (G) Taxol (p.o.) (30 mg kg⁻¹).

Formulations	IC50 (nmol/L)		
Taxol	27.9		
PTX NEs	26.4		
α-PTX-SS-CIT NEs	48.5		
β-PTX-SS-CIT NEs	241.5		
γ-PTX-SS-CIT NEs	119.0		

Table S1. IC_{50} values (nmol/L) of PTX NEs, Taxol, and prodrug NEs to 4T1 cell line.

Mixed oil	Egg yolk lecithin (mg)	Sodium deoxycholate (mg)	Size (nm)	PDI
Soybean oil: MCT=1:4	120	40	145.7±0.5	0.234±0.02
Soybean oil: MCT=1:4	200	40	149.8±1.1	0.112±0.01
Soybean oil: MCT=1:4	240	40	164.4±1.2	0.195±0.12
Soybean oil: MCT=1:4	120	100	145.2±0.2	0.189±0.15
Soybean oil: MCT=1:4	120	130	169.4±0.9	0.170±0.10
Soybean oil: MCT=1:4	200	100	188.6±0.8	0.175±0.02

Table S2. The screening process of the amount of emulsifier.

Ratio of oil and water (w/w)	Egg yolk lecithin (mg)	Sodium deoxycholate (mg)	Size (nm)	PDI
Oil: water=1:5	200	40	146.5±0.4	0.240±0.12
Oil: water=1:6	200	40	147.0±1.6	0.211±0.14
Oil: water=1:7	200	40	135.4±1.2	0.145±0.18
Oil: water=1:8	200	40	126.2±0.1	0.197±0.11
Oil: water=1:9	200	40	133.0±1.3	0.158±0.12
Oil: water=1:10	200	40	149.8±0.6	0.112±0.02

Table S3. The screening process of ratio of oil and water(w/w).