Supporting Information

High-Voltage Non-Aqueous Hybrid Supercapacitor Based on N2200 Polymer Supported Over Multiwalled Carbon Nanotube

Bhaiyyasaheb Anurath Wavhal⁺,^{a, c} Meena Ghosh⁺,^{b, c} Sandeep Sharma,^{a,d}

Sreekumar Kurungot,^{b,*} and Asha SK^{a, c,*}

a) Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India

b) Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India

c) Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar Pradesh, India

d) (Current affiliation) Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

⁺Authors contributed equally to this work

Corresponding Authors:

- 1) Dr. Asha SK, E-mail: <u>sk.asha@ncl.res.in</u>
- 2) Dr. Sreekumar Kurungot, E-mail: <u>k.sreekumar@ncl.res.in</u>

Table of Content

Section	Subject							
Section S1	Synthesis of NDI-2OD-Br ₂ .	S4						
Figure S1	¹ H NMR spectrum of monomer NDI-2OD-Br ₂ reagent in CDCl ₃ .	S 5						
Figure S2	¹ H NMR spectrum of P(NDI2OD-T2) (P-0) Polymer.	S 6						
Figure S3	Gel permeation chromatogram (GPC) of P(NDI2OD-T2) and their composites.	S 7						
Figure S4	EDX spectra of P(NDI2OD-T2) and their composites.							
Table S1	Atomic percentage of the elements present in CNT, P-0, C-1, C-2, C-3, and Ex C-30 samples obtained from the EDX analysis.	S10						
Figure S5	TGA curves of the polymer composites.	S11						
Figure S6	UV-vis absorption spectra for P(NDI2OD-T2).							
Section S2	Calculation of molar absorptivity coefficient for P(NDI2OD-T2) polymer and concentration of polymer in C-X composites.							
Figure S7	(a) Pore size distribution profile for P-0, (b) Pore size distribution profile for MWCNT, (c) nitrogen adsorption/desorption isotherm of P-0 sample, and (d) nitrogen adsorption/desorption isotherm of MWCNT sample.	S14						
Figure S8	CV profiles of MWCNT recorded at various scan rates.	S15						
Figure S9	Nyquist plots recorded for the P-0, C-1, and C-2 samples.	S15						
Figure S10	CV profiles recorded at various scan rates for the (a) P-0, (b) Ex C-30, (c) C-1, and (d) C-2 samples.	S16						
Figure S11	(a) Discharge profiles recorded at various current rates for MWCNT and (b) discharge profiles of the P-0, C-1, C-2, C-3, and Ex C-30 samples at 0.50 A g^{-1} considering the total loading of the electrode material (1.0 mg cm ⁻²); discharge profiles at various current rates for the (c) P-0, (d) Ex C-30, (e) C-1, (f) C-2 samples.	S17						

Figure S12	(a) CV data collected for the C-3 $\ $ C-3 symmetric device at 50 mV s ⁻¹ scan	S18
	rate; (b) CV data recorded at 50 mV s ⁻¹ scan rate and (c) discharge profiles	
	recorded at 0.50 A g^{-1} (considering total loading of electrode material) for	
	the activated carbon (AC) and C-3 samples in the three- electrode	
	configuration; (d) CV profiles for the C-3 C-3 symmetric device and the	
	LS-HSC device recorded at 50 mV s ⁻¹ scan rate.	
Figure S13	(a) CV profiles recorded at different scan rates, (b) GCD profiles recorded	S19
	at different current rates, (c) impedance plot, and (d) cycling stability data	
	for the LS-HSC device recorded at a current rate of 1.0 A g^{-1} .	
Table S2	Performance comparison table	S20
Section S3	Calculation of the discharge capacity	S21-S22
References		S23

Section S1

1. Synthesis of NDI-2OD-Br₂.

Synthesis of N, N'-Bis (2-octyldodecyl)-2,6-dibromo-1,4,5,8-naphthalenediimide (NDI-**20D-Br2**): Synthesis of NDI-20D-Br₂ was done using the same procedure as reported in earlier literature from our group.¹ 2,6 dibromo-1,4,5,8-naphthalenetetracarboxylic acid dianhydride (NTCDA-Br₂) (4.0 g, 9.389 mmole) was taken in a two neck round bottom flask to which 106 mL of glacial acetic acid was added under N2 atmosphere and stirred at 60-70 °C for a short period of time to get a homogeneous dispersion which was followed by addition of 2-octyldodecyl amine (11.17 g, 37.55 mmol). The reaction mixture was stirred and refluxed at 120 °C to complete dissolution for 3 hours, after which it was cooled to room temperature. The excess glacial acetic acid was evaporated and reaction mixture was concentrated under reduced pressure by rotary evaporator. Then the reaction mixture was washed with methanol to yield reddish brown powder that was filtered and dried under vacuum. The crude product was purified by column chromatography using pet ether and ethyl acetate as eluent followed by re-crystallization from acetone to get yellow powder of pure compound. Product was dried in vacuum oven at 60 °C. Yield: 1.97 g (21 %, by considering 2, 6 isomer). Melting point (85-86 °C); ¹H NMR (200 MHz, CDCl3) δ ppm: 8.93 (s, 2H, aromatic), 4.15 (d, 4H), 1.92 (m, 2H), 1.16, (m, 64 H), 0.80 (m, 12H).

Figure S1. ¹H NMR spectrum of monomer NDI-2OD-Br₂

Figure S2. ¹H NMR spectrum of P(NDI2OD-T2) (P-0) Polymer.

Figure S4. EDX spectra of P(NDI2OD-T2) and their composites. P(NDI2OD-T2) <u>P-0</u>

Acquisition Pa:	rameter
Instrument :	JEM-F200 (URP)
Acc. Voltage :	200.0 kV
Probe Current:	7.47500 nA
PHA mode :	тЗ
Real Time :	134.86 sec
Live Time :	50.00 sec
Dead Time :	62 🕏
Counting Rate:	195164 cps
Energy Range :	0 - 40 keV

2A	- Meun	iou scandardie	ss Quant	ruative	Anarysis				
Fit	ting	Coefficient :	0.3138						
Ele	ement	(keV)	Masst	Sigma	Atom%	Compound	Masst	Cation	K
С	ĸ	0.277	70.13	0.03	76.03				80.5529
N	ĸ		ND		ND				
0	ĸ	0.525	29.02	0.06	23.62				14.5488
s	ĸ	2.307	0.85	0.00	0.34				4.8983
Tot	tal		100.00		100.00				

Acquisition Parameter
Instrument : JEM-F200(URP)
Acc. Voltage : 200.0 kV
Probe Current: 7.47500 nA
PHA mode : T3
Real Time : 144.27 sec
Live Time : 50.00 sec
Dead Time : 65 %
Counting Rate: 199176 cps
Energy Range : 0 - 40 keV

ZAH Fit	7 Method ting Coe	Standardle: efficient :	ss Quant: 0.4307	itative	Analysis				
Ele	ement	(keV)	Masst	Sigma	Atom%	Compound	Masst	Cation	K
С	ĸ	0.277	72.26	0.04	77.73				88.3821
Ν	ĸ		ND		ND				
0	K	0.525	27.42	0.07	22.14				9.8400
s	K	2.307	0.32	0.00	0.13				1.7780
Tot	al		100.00		100.00				

Table S1: Atomic percentage of the elements present in CNT, P-0, C-1, C-2, C-3, and Ex C-30 samples obtained from the EDX analysis.

Element	CNT	P-0	C-1	C-2	C-3	Ex C-30
Name	atom %	atom %	Atom %	Atom %	atom %	atom %
СК	100	78.16	76.03	77.56	77.73	75.15
ОК		21.46	23.62	22.28	22.14	24.84
S K		0.38	0.34	0.16	0.13	0.01

Section S2. Calculation of molar absorptivity coefficient for P(NDI2OD-T2) polymer and concentration of polymer in the composites C-X using molar absorptivity coefficient.

Molar absorptivity coefficient was calculated at 383 nm by using Lambert-Beers law, $A = \frac{1}{2}$ cl Where, A= Absorbance, C= concentration g/mole, l= path length, $\frac{1}{2}$ =35954 L M⁻¹cm⁻¹.

The calculation for obtaining the concentration of polymer in the composites is shown below.

 \triangleright P-0 C=A/ε A= 0.7826; C= 0.7826/35954 = 2.1767 X 10⁻⁵ M

 $1 \text{ M} = 988 \text{ gm of Polymer (repeating unit mass)} = 2.1767 \text{ X } 10^{-5} \text{ x } 988 = 0.02151 \text{ gm, for 1000}$ ml solution.

As 1 mg polymer was dissolved in 50 ml of chloroform: $(0.02151 \text{ x } 50)/1000 = 1.075 \text{ x} 10^{-3} \text{ g}$ = 1 mg

➤ C-1 A= 0.6086;

 $C = 0.6086/35954 = 1.6927 \text{ X } 10^{-5} \text{ M} = 1.6927 \text{ X } 10^{-5} \text{ x } 988 = 0.01672 \text{ gm}.$

In 50 ml: $(0.01679 \text{ x } 50) / 1000 = 8.362 \text{ x} 10^{-4} \text{ g} = 0.836 \text{ mg}$

Amount of CNT = 1mg - 0.839 mg polymer = 0.16 mg CNT

➤ C-2 A= 0.5292;

 $C = 0.5292/35954 = 1.4719 \text{ X } 10^{-5} \text{ M} = 1.4719 \text{ X } 10^{-5} \text{ x } 988 = 0.01454 \text{ gm}.$

In 50 ml: (0.01454 x 50) / 1000 = 0.727 mg

Amount of CNT = 1mg - 0.727 mg polymer = 0.273 mg CNT

➤ C-3 A= 0.4453;

 $C = 0.4453/35954 = 1.2385 \text{ X } 10^{-5} \text{ M} = 1.2385 \text{ X } 10^{-5} \text{ x } 988 = 0.012236 \text{ gm}.$

In 50 ml: (0.012236 x 50) /1000 = 0.6118 mg

Amount of CNT = 1mg - 0.6118 mg polymer = 0.388 mg CNT

Figure S7. (a) Pore size distribution profile for P-0, (b) Pore size distribution profile for MWCNT, (c) nitrogen adsorption/desorption isotherm of P-0 sample, and (d) nitrogen adsorption/desorption isotherm of MWCNT sample.

Figure S8. CV profiles of MWCNT recorded at various scan rates.

Figure S9. Nyquist plots recorded for the P-0, C-1, and C-2 samples.

Figure S10. CV profiles recorded at various scan rates for the (a) P-0, (b) Ex C-30, (c) C-1, and (d) C-2 samples.

Figure S11. (a) Discharge profiles recorded at various current rates for MWCNT and (b) discharge profiles of P-0, C-1, C-2, C-3, and Ex C-30 samples recorded at 0.5 A g⁻¹ considering the total loading of electrode material (1mg cm⁻²); discharge profiles recorded at various current rates for the (c) P-0, (d) Ex C-30, (e) C-1, and (f) C-2 samples.

Figure S12. (a) CV data taken for the C-3||C-3 symmetric device at 50 mV s⁻¹ scan rate; (b) CV data recorded at 50 mV s⁻¹ scan rate and (c) discharge profiles recorded at 0.50 A g⁻¹ (considering total loading of electrode material) for the activated carbon (AC) and C-3 samples in three-electrode configuration; (d) CV profiles recorded for the C-3||C-3 symmetric device and AC||C-3 HSC device in 1M LiClO₄/PC liquid electrolyte at 50 mV s⁻¹ scan rate.

Figure S13. (a) CV profiles recorded at different scan rates, (b) GCD profiles recorded at different current rates, (c) impedance plot, and (d) cycling stability data for the AC||C-3 HSC device in 1M LiClO₄/PC (LS-HSC device) recorded at a current rate of 1.0 A g⁻¹.

Table S2: The capacitance, voltage window, and cycling stability of C-3 composite in threeelectrode cell and HSC device configurations are compared with the performance of some of the previously reported redox active polymers.

Material	Electrolyte	Voltage window	Configura tion	Specific capacity or capacitance	Cycling stability	Ref.
PBOTT- BTD/ITO/PET	0.1 M TBAPF ₆ /ACN	-0.2 to 0.6 V	Three- electrode	2.5 mF cm ⁻² (31 F g ⁻¹) @ 0.1 mA cm ⁻² (capacity ≈7 mAh g ⁻¹) ^a	86 % retention after 2000 cycles	2
PI-IDT	0.5 M LiClO4/PC	0 to 0.95 V	Three- electrode	$6.2 \text{ mF cm}^{-2} @ 0.05 \text{ mA} \text{ cm}^{-2}$	68 % retention after 1000 cycles	3
P(NDI2OD- OThCNPV) or P2	0.5 M H ₂ SO ₄	-0.7 to 0.5 V	Three- electrode	124 F g ⁻¹ @ 0.5 A g ⁻¹ (capacity \approx 41.3 mAh g ⁻¹) ^a	100% retention after 5000 cycles	4
P(PDI-alt-BDT)	1 M LiClO4/PC	-1.5 to -0.85 V	Three- electrode	113 F g ⁻¹ @ 0.5 A g ⁻¹ (capacity \approx 31 mAh g ⁻¹) ^a	100% retention after 4000 cycles	5
PBEDOT-BT- BD	0.1 M Bu4NPF6/ACN	-0.5 to 1.1 V	Three- electrode	129.3 F g ⁻¹ @ 1 A g ⁻¹ (capacity ≈ 60.1 mAh g ⁻¹) ^a	77% retention after 1000 cycles	6
PBEDOT- iIBut2	1 M LiBTI/ PMMA/PC	0 to 0.5 V	Device	14 F g ⁻¹ @ 50 mV s ⁻¹ (capacity ≈ 1.9 mAh g ⁻¹) ^a	80% retention after 10000 cycles	7
Ag NW/PDOPEQ	1 M LiClO4/PC	0 to 0.5 V	Three electrode	61.5 F g ⁻¹ @ 0.1 A g ⁻¹ (capacity ≈ 8.5 mAh g ⁻¹) ^a	~100% retention after 20000 cycles	8
TPA1Th- NDI//AC	TEATFB/PC/ DME	0 to 2.0 V	Device	22 F g ⁻¹ (capacity \approx 12.2 mAh g ⁻¹) ^a	~90% retention over 500 cycles	9
P(DEBT/TETP A)	0.1 M TBAPF ₆ /ACN	-0.5 to 0.8 V	Three electrode	149 F g ⁻¹ @ 10 mV s ⁻¹ (capacity \approx 53.8 mAh g ⁻¹) ^a	~100% retention over 2000 cycles	10
C-3	1 M LiClO4/PC	-1.4 to - 0.2 V	Three electrode	80 mAh $g^{-1}_{(polymer)}$ (or 240 F $g^{-1}_{(polymer)}$) @ 0.5 A g^{-1}	80% retention after 2500 cycles	This work
AC C-3	LiClO4/PMMA/ PC	0 to 2.4 V	Device	11 mAh g ⁻¹ (or 16.8 F g ⁻¹ @ 0.4 A g ⁻¹	57% retention after 100 cycles	This work

a: capacity (mAh g⁻¹) values are calculated from the capacitance (F g⁻¹) provided in the respective reports (capacity (mAh g⁻¹) = $\frac{capacitance (F g^{-1}) \times voltage window}{3600} \times 1000$)

Section S3.

1) Calculation of the specific discharge capacity in the three-electrode cell:

Charge (Q) = $li \times t$

where i (in A) and t (in sec) are current and time, respectively.

Capacity (mAh) = $\frac{Q \times 1000}{3600}$

Therefore, the equation for specific discharge capacity (mAh g⁻¹) can be presented as

Specific discharge capacity (mAh g⁻¹) = $\frac{Applied \ current \ (A) \times discharge \ time \ (sec)}{electrode \ loading \ (mg) \times 3600} \times 10^6$

(Equation S1)

As already mentioned, the total loading of the P-0, C-1, C-2, C-3, and Ex C-30 eletrodes were 1.0 mg. In the case of the MWCNT electrode, the total loading was 0.33 mg.

2) Calculation of specific discharge capacity considering the loading of only the redox-active polymer (mAh $g^{-1}_{(polymer)}$)

 $=\frac{Applied\ current\ (A) \times discharge\ time\ (sec)}{loading\ of\ the\ polymer\ (mg) \times 3600} \times 10^6$

(Equation S2)

Sample	MWCNT	PVDF	Polymer	
	content (%)	content (%)	content (mg)	
P-0	0	5	0.95	
C-1	14	5	0.8	
C-2	24	5	0.7	
C-3	35	5	0.6	
Ex C-30	30	5	0.65	

The loading of the polymer in the respective electrodes is given below:

3) Calculation for balancing the loading in the positive (AC) and negative electrode (C-3) in the hybrid supercapacitor device:

The mass ratio of the electrodes was calculated by following equation,

$$\frac{M_{AC}}{M_{C-3}} = \frac{Q_{C-3}}{Q_{AC}}$$
(Equation S3)

where, M_{AC} and M_{C-3} are the total loading of positive and negative electrodes, respectively.¹¹ Q_{AC} and Q_{C-3} represent the discharge capacity values (considering the total mass-loading in the respective electrode) of the positive and negative electrodes obtained from the three-electrode study.

$$\frac{M_{AC}}{M_{C-3}} = \frac{53 \ mAh \ g^{-1}}{34 \ mAh \ g^{-1}}$$
$$\frac{M_{AC}}{M_{C-3}} = \frac{1.5}{1.0}$$

Therefore, the total loadings in the positive and negative electrodes were taken as 1.5 mg and 1 mg, respectively.

4) The capacity of the hybrid supercapacitor device was calculated from the following equation:

Capacity $(mAh g_{(total)}^{-1}) =$

 $\frac{\text{Discharge time (hour)} \times \text{applied current (mA)}}{\text{total mass-loading of the electrode materials in both the positive and negative electrodes (mg)}} \times 1000$

(Equation S4)

References.

- 1 S. Sharma, N. B. Kolhe, V. Gupta, V. Bharti, A. Sharma, R. Datt, S. Chand and S. K. Asha, *Macromolecules*, 2016, *49*, 8113-8125.
- 2 Y. Guo, W. Li, H. Yu, D. F. Perepichka and H. Meng, Adv. Energy Mater., 2017, 7, 1601623.
- 3 Y. Sun, X. Zhao, G. Zhu, M. Li, X. Zhang, H. Yang and B. Lin, *Electrochimica Acta*, 2020, **333**, 135495.
- 4 S. Sharma, R. Soni, S. Kurungot and S. K. Asha, *Macromolecules*, 2018, 51, 954-965.
- 5 S. Sharma, R. Soni, S. Kurungot and S. K. Asha, *J. Phys. Chem. C*, 2019, **123**, 2084-2093.
- D. Mo, W. Zhou, X. Ma, J. Xu, F. Jiang and D. Zhu, *Electrochimica Acta*, 2015, 151, 477-488.
- L. A. Estrada, D. Y. Liu, D. H. Salazar, A. L. Dyer and J. R. Reynolds, *Macromolecules*, 2012, 45, 8211-8220.
- 8 R. Yuksel, S. Coskun, G. Gunbas, A. Cirpan, L. Toppare and H. E. Unalan, *Journal of The Electrochemical Society*, 2017, **164**, A721-A727.

- D. F. Zeigler, S. L. Candelaria, K. A. Mazzio, T. R. Martin, E. Uchaker, S.-L. Suraru,
 L. J. Kang, G. Cao and C. K. Luscombe, *Macromolecules*, 2015, 48, 5196-5203.
- 10 W. Li, Y. Guo, Y. Wang, X. Xing, X. Chen, J. Ning, H. Yu, Y. Shi, I. Murtaza and H. Meng, J. Mater. Chem. A, 2019, 7, 116–123.
- J. Kasnatscheew, T. Placke, B. Streipert, S. Rothermel, R. Wagner, P. Meister, I. Laskovic and M. Winter, *Journal of The Electrochemical Society*, 2017, 164, A2479-A2486.