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1 The Simmons Model
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Figure S1: A trapezoidal tunnel barrier between a Left (L) and Right (R)
electrode, separated by a distance d and an electrical bias V. Here, L and R are
of the same material and at zero bias φL = φR.

An expression for the current density j flowing through a trapezoidal tunnel
barrier of width d = x2 − x1 between two biased electrodes was derived by
Simmons:1

j = e
4πm

h3

∫ ∞
0

dε[fL(ε)− fR(ε)]

∫ ε

0

dεxT (εx) (S1)

where m is the electron mass, fL,R(ε) = (e−(ε−µL,R)/kBT + 1)−1 is the Fermi
energy of the left and right leads, respectively, dependent on their chemical
potential µL,R, and T (εx) describes the transmission probability of an electron of
energy εx through the tunnel barrier in the x-direction. An expression for T (εx)
can be found by using the Wentzel-Kramers-Brillouin (WKB) approximation:

T (εx) = e
−β

∫ x2
x1

dx
√
φ(x)−εx (S2)

where β = 2
√

2m
h̄ and φ. If the work functions of the left and right leads are

not equal, but change linearly from φL at x1 to φR at x2 as the a voltage V is
applied symmetrically across the junction then we can write:

φL,R = (1± α)φ′ (S3)

where φ′ = φL−φR

2 is the average barrier height and α = φL−φR

φL+φR
is an

asymmetry factor, which are used for simplified fitting. Different analytical
expressions for the integral

∫ x2

x1
dx
√
φ(x)− εx can be found depending on the

relative magnitudes of φL, φR and εx:2
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if φL,R < εx < φR,L :

∫ x2

x1

dx
√
φ(x)− εx = d

2

3

(φR,L − εx)3/2

φR − φL
(S4)

else εx < φL, φR :

∫ x2

x1

dx
√
φ(x)− εx = d

2

3

(φR − εx)3/2 − (φL − εx)3/2

φR − φL
(S5)

In the low temperature limit where kBT << µL, µR, φ(x) the Fermi distri-
bution becomes a step function and (S1) becomes:

j = e
4πm

h3

∫ µL

µR

dε

∫ ε

0

dεxT (εx) (S6)

In order to fit (S6) to the measured current I we must multiply it by the
cross sectional area A′ of the junction such that I = A′j. However, A′ is not
independent of other variables such as the effective electron mass and so is
incorporated into a prefactor A = e 4πm

h3 A′. Current-voltage data can then be
fitted to the model to (S7) to find φ′ [eV], α, d [m] and A [eV−2].

I = A

∫ µL

µR

dε

∫ ε

0

dεxT (εx) (S7)

2 The Orthodox Model

Electron transport through a mesoscopic island separated by two tunnel bar-
riers is well described by the classical ‘orthodox’ theory of correlated electron
tunneling.3–5 This model does not consider any discreteness of the energy spec-
trum of the island. This is a particularly good approximation for metals where
level spacing is negligible. The orthodox theory can be extended to consider the
presence of quantised energy levels provided that kBT is much greater than the
intrinsic width of these levels, details of which can be found in6,7, but this will
not be considered here.

Figure S2 shows an equivalent 2-terminal RC circuit model that the orthodox
theory describes. The tunnel rates Γ+,−

L,R capture the rate at which electrons are
added to/taken off the island from to/from the left/right electrodes, as indicated
by the arrows. We can describe the associated addition/subtraction energies
with each added/removed electron starting from an initial state of n electrons
on the island as:

∆E+
L (n) = U(n+ 1)− U(n) + ηeVb (S8)

∆E−L (n) = U(n)− U(n− 1) + ηeVb (S9)

∆E+
R (n) = U(n+ 1)− U(n)− (1− η)eVb (S10)
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Figure S2: A circuit diagram representing the orthodox model. Each tunnel
barrier is represented by a RC circuit and electrons tunnel from (−)/to (+) the
Left/Right electrodes at rate Γ. The central island has a residual fractional
charge Q0.

∆E−R (n) = U(n)− U(n− 1)− (1− η)eVb (S11)

Where U(n) is the total energy of the island with n electrons, Vb is the bias
voltage and η is the fraction of the voltage dropped over the left tunnel barrier.
Within the limits of the model we can equivalently express these in electrostatic
terms:

∆E±L (n) = ∆U±(n)± eCR

CL + CR
Vb (S12)

∆E±R (n) = ∆U±(n)∓ eCL

CL + CR
Vb (S13)

∆U±(n) =
(Q± e)2

2(CL + CR)
− Q2

2(CL + CR)
(S14)

Where Q = (ne − Q0) is the total charge of the island before the electron
tunnels and Q0 is the fractional charge (|Q0| < e/2) present on the island at
zero bias. We can then write:

∆E±L (n) =
e

CL + CR

(e
2
± ((ne−Q0) + CRVb)

)
(S15)

∆E±R (n) =
e

CL + CR

(e
2
± ((ne−Q0)− CLVb)

)
(S16)

The tunnelling rates across the left-side and right-side barriers can be ob-
tained from a golden rule calculation3:

Γ±L,R(n) =
1

RL,Re2

(
−∆E±L,R(n)

1− exp (∆E±L,R(n)/kBT )

)
(S17)
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Where any dependence of Γ±L,R on n itself has been neglected. The current
through the island at a given bias voltage is then given by:

I(Vb) = e

∞∑
n=−∞

σ(n)
[
Γ+

R(n)− Γ−R(n)
]

= e

∞∑
n=−∞

σ(n)
[
Γ−L (n)− Γ+

L (n)
]

(S18)

Here, σ(n) describes the ensemble distribution of the number of electrons on
the island: the probability that any one value of n electrons are on the island.
Finding σ(n) requires noting that the net probability for making a transition
between any two adjacent states is zero under a steady state, giving:

σ(n)
[
Γ+

L (n) + Γ+
R(n)

]
= σ(n+ 1)

[
Γ−L (n+ 1) + Γ−R(n+ 1)

]
(S19)

and by implementing the normalisation condition
∑∞
n=−∞ σ(n) = 1. Thus,

we can solve for σ(n) and thereby I(Vb) numerically.

We can extend this theory to include the influence of a gate electrode at voltage
Vg connected to the island by a capacitor CG by modifying (S15) and (S16) to:

∆E±L (n) =
e

CΣ

(e
2
± ((ne−Q0) + CRVb − CGVg)

)
(S20)

∆E±R (n) =
e

CΣ

(e
2
± ((ne−Q0)− (CL + CG)Vb − CGVg)

)
(S21)

where CΣ = CL +CR +CG. From here the derivation of the current follows
the same process as above.

3 Thermally Broadened Peaks

From Beenakker,7 in the classical limit of hΓ,∆E � kBT � e2/CE the line-
shape of the Coulomb blockade resonances is given by:

G/Gmax ≈ cosh−2

(
βe|Vg − V0|

2.5kBT

)
(S22)

where β is the capacitive coupling to the gate, Vg is the gate voltage and V0

is the voltage at which the resonance is centred.

4 Electric Field Calculations

The electric field distribution in our graphene devices was modelled using the
finite element method in COMSOL Multiphysics 5.5 using the electric currents
interface from the AC/DC physics module which computes electric fields and
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Figure S3: Schematics of the geometries used for electric field calculations for:
(a) A 2 nm graphene nanogap with a floating buried gate, (b) a single graphene
electrode trapping against a buried gate and (c) a 20 nm gold electrode trapping
against a buried gate.

potential distributions for conducting media where inductive effects can be ne-
glected. The model was solved in the frequency domain at ω = 1 MHz. In this
interface Poisson’s equation is expressed as:

∇ · J = Q = −∂ρ/∂t (S23)

J = σE + jωD (S24)

E = −∇ϕ (S25)

The simulation domain was built as shown in Figure S3a. The citrate so-
lution was assumed to have a permittivity of 80 and was found to have a con-
ductivity of 600µS cm−1. The HfO2 was assigned a permittivity of 13 8 and a
negligible conductivity. Dirichlet boundary conditions of ϕ = 0.75 and ϕ = 0
were set on the left and right vertices of the graphene layer at the edges of
the simulation domain, respectively. The buried gate electrode was assigned a
‘floating potential’ boundary condition. All other external boundaries were set
to an insulating Neumann boundary condition n · J = 0. At the graphene layer
a dielectric shielding boundary condition was used whereby:

n · (J1 − J2) = −∇T · dsd((σ + jωε0εr)∇Tϕ) (S26)

where n is the normal vector, J1,2 are the current densities on either side
of the boundary, ∇T is the tangential differential, ds is the thickness of the
boundary which was set as 1 nm. We used εr = 6.9 9 and set the conductivity
as σ = eµe n2D(ϕ(x)), where µe is the electron mobility in graphene (2.5× 104

cm2V−1s−1 10) and n2D is the surface charge concentration per unit area. This
was defined according to the analytical expression presented by Barik et al.:11

n2D(ϕ(x)) = 2
Γ(2)

π

(
kBT

h̄νF

)2 [
F1(

eϕ(x)

kBT
)−F1(

−eϕ(x)

kBT
)

]
(S27)
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where νF is the Fermi velocity (106 ms−1 in graphene), ϕ(x) is the electric
potential at position x in the graphene layer and F1 is the Fermi-Dirac integral
of order 1:

Fj =
1

Γ(j + 1)

∫ ∞
0

εjdε

eε−η + 1
(S28)

where η = ±/kBT and Γ(n) = (n− 1)!. n2D(x) was calculated in MATLAB
using the algorithm published by Wang and Lundstrom,12 which was then used
by COMSOL in a self-consistent calculation for ϕ.

The calculations for a single graphene electrode trapping against a local gate
electrode were configured in much the same way, except that the gate electrode
was assigned a Dirichlet boundary condition of ϕ = Vg = 0.75 and the left
electrode was removed. This is shown in Figure S3b. For the gold electrode a
20 nm high, rounded geometry was used, and the potential difference was again
applied between the buried gate and the right electrode as shown in Figure S3c.
The gold was assigned a conductivity of 4.6× 107 S cm−1 13 and a permittivity
of 1.
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