Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting information

High speed growth of MAPbBr₃ single crystals via lowtemperature inverting solubility: enhancement of mobility and trap density for photodetector applications

Yunae Cho¹, Hye Ri Jung¹, Yeon Soo Kim¹, Yejin Kim¹, Joohee Park¹, Seokhyun Yoon¹, Yousil Lee², Miyeon Cheon², Se-young Jeong³, William Jo*¹

¹ Department of Physics, Ewha Womans University

² Crystal Bank Research Institute, Pusan National University

³ Department of Optics and Mechatronics Engineering, Pusan National University

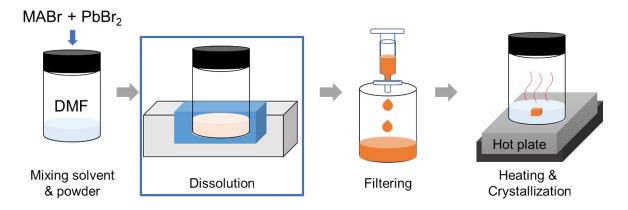
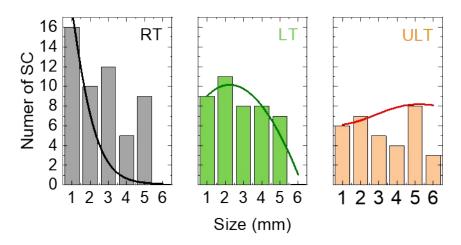
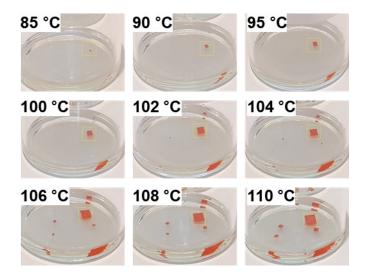
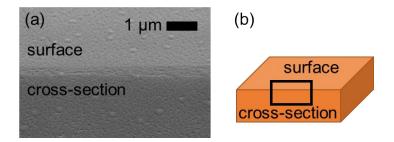


Figure S1 Schematic representation of the ITC method displayed on the control of dissolution temperatures.

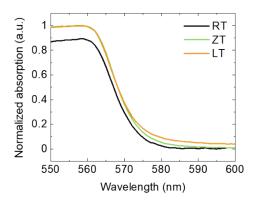

Figure S2 The distribution of crystal size at different dissolution temperatures.

Figure S3 MAPbBr₃ single crystal images at different temperatures during the heating process with LT condition.

Figure S4 (a) SEM images of surface and cross-section for MAPbBr $_3$ single crystals with LT conditions. (b) Schematic of SEM measurement region for MAPbBr $_3$ single crystal

Figure S5 Absorption of MAPbBr₃ single crystals with different dissolution conditions.