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Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-

doped MOFs as highly efficient oxygen reduction electrocatalysts in 

both alkaline and acidic media 

 

The authors regret that an incorrect image was used in Figure S3, panel i for the TEM images 

of 3Fe-N/C-NR, and Figure S3 has therefore been replaced in this document. The original 

Figure S3 and caption is displayed below for future reference: 

 

 

Figure S3. SEM images of (a, b, c) 3Fe-ZIF-NR and (d, e, f) 3Fe- N/C-NR; TEM images of (g, 

h, i) 3Fe-N/C-NR. 
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Figure S1. SEM images of (a, b, c) ZIF-8-NR and (d, e, f) N/C-NR; TEM images of (g, h, i) N/C-NR. 
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Figure S2. SEM images of (a, b, c) 1Fe-ZIF-NR and (d, e, f) 1Fe- N/C-NR; TEM images of (g, h, i) 1Fe-N/C-

NR. 
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Figure S3. SEM images of (a, b, c) 3Fe-ZIF-NR and (d, e, f) 3Fe- N/C-NR; TEM images of (g, h, i) 3Fe-N/C-

NR. 
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Figure S4. SEM images of (a, b, c) 5Fe-ZIF-NR and (d, e, f) 5Fe- N/C-NR; TEM images of (g, h, i) 5Fe-N/C-

NR. 
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Figure S5. SEM images of (a, b, c) 7Fe-ZIF-NR and (d, e, f) 7Fe- N/C-NR; TEM images of (g, h, i) 7Fe-N/C-

NR. 
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Figure S6. SEM images of (a, b, c) 5Fe-ZIF-RD and (d, e, f) 5Fe- N/C-RD; TEM images of (g, h, i) 5Fe-N/C-

RD. 
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Figure S7. C 1s XPS spectra of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR and (d) 7Fe-N/C-NR. (e) 

The contents of C–N in all C species (C–C, C–N and C=O) for all samples. 
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Figure S8. N 1s XPS spectra of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR and (d) 7Fe-N/C-NR. (e) 

The contents of graphitic N in all N species (pyridinic N, pyrrolic N, N–Fe and graphitic N) for all samples. 

(f) Influence of iron doping on the N and Fe contents of various catalysts based on XPS analysis. 
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Figure S9. CV curves of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR, (d) 7Fe-N/C-NR, (e) 5Fe-N/C-

RD and (f) Pt/C in N2-saturated and O2-saturated 0.1 M KOH solution. 

 

 

Figure S10. (a) LSV curves and (b) electron-transfer numbers and H2O2 yields for various 5Fe-N/C-NR 

catalyst loadings, at 1600 rpm in 0.1 M KOH electrolyte. 
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Figure S11. CV curves of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR, (d) 7Fe-N/C-NR, (e) 5Fe-N/C-

RD and (f) Pt/C in N2-saturated and O2-saturated 0.1 M HClO4 solution. 

 

 

Figure S12. (a) SEM and (b) TEM images of 5Fe-N/C-NR after the stability test in acidic electrolyte. 
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Table S1. BET surface areas, total pore volumes, miropore volume, meso/macropore volume and 

element contents of various samples measured by XPS analysis 

Samples 

 

SBET 

(m2/g) 

Total pore 

volume 

(cm3/g) 

Miropore 

volume 

(cm3/g) 

Meso/macropore 

volume (cm3/g) 
Element contents 

(at. %) 

     C N Fe 

N/C 939 0.59 0.44 0.15 - - - 

1Fe-N/C-NR 819 0.50 0.39 0.11 81.75 8.51 0.74 

3Fe-N/C-NR 612 0.48 0.29 0.19 81.77 7.69 1.01 

5Fe-N/C-NR 502 0.44 0.24 0.20 80.86 5.38 1.24 

7Fe-N/C-NR 379 0.44 0.19 0.25 80.80 4.84 2.38 

 

Table S2. The contents of different types of C and N for various samples form XPS analysis. 

Samples 

C type N type 

C–C(%) C–N(%) C=O(%) 
Pyridinic 

N(%) 

N–Fe 

(%) 

Pyrrolic 

N(%) 

Graphitic 

N(%) 

1Fe-N/C-NR 38.20 40.05 21.75 33.28 24.95 20.14 21.63 

3Fe-N/C-NR 42.85 36.73 20.42 26.79 22.65 23.52 27.04 

5Fe-N/C-NR 46.48 31.04 22.48 25.54 22.46 15.07 36.93 

7Fe-N/C-NR 60.41 25.57 14.02 14.85 22.14 27.52 35.49 
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Table S3. Comparison of the onset potentials and the half-wave potentials toward ORR for literature-

reported Fe-based catalysts and 5Fe-N/C-NR from this work under alkaline conditions. 

Electrocatalysts 

Eonset 

(V vs. RHE) 

E1/2 

(V vs. RHE) 

 

Electrolyte 

 

References 

Fe-SAC/NC 0.95 0.84 0.1 M KOH [1] 

Fe-CZIF-800-10 0.982 0.830 0.1 M KOH [2] 

Fe,N-HPCC 0.972 0.898 0.1 M KOH [3] 

Fe14NDC-9 0.968 0.888 0.1 M KOH [4] 

Fe(1,10-phen)/KB 0.966 0.861 0.1 M KOH [5] 

Fe-N-HPC-AH 0.97 0.87 0.1 M KOH [6] 

Fe/N/C 0.94 0.84 0.1 M KOH [7] 

Fe-N-C 0.971 0.844 0.1 M KOH [8] 

Fe0.5-950 0.97 0.89 0.1 M KOH [9] 

Fe SAs-N/C-20 0.97 0.909 0.1 M KOH [10] 

Fe@Aza-PON 0.9 0.839 0.1 M KOH [11] 

SA-Fe-HPC 0.96 0.89 0.1 M KOH [12] 

F0.2N0.2M0.2-900 0.970 0.873 0.1 M KOH [13] 

FeCo 0.995 0.920 0.1 M KOH [14] 

(Fe,Co)/N-C 1.06 0.863 0.1 M KOH [15] 

Fe/N/S-CNTs 0.987 0.887 0.1 M KOH [16] 

FeSAs/PTF-600 1.01 0.87 0.1 M KOH [17] 

CA-Fe/MF-N900 0.98 0.83 0.1 M KOH [18] 

Fe/N/S-PCNT 0.96 0.84 0.1 M KOH [19] 

C-FeZIF-900-0.84 0.95 0.84 0.1 M KOH [20] 

Fe/N/C-1000-2 1.0 0.87 0.1 M KOH [21] 

Fe3-NG 0.965 0.826 0.1 M KOH [22] 

Fe3C@NG-800-0.2 0.98 0.83 0.1 M KOH [23] 

S-Fe/N/C 0.91 0.84 0.1 M KOH [24] 
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Fe3C@N-CNT 0.97 0.85 0.1 M KOH [25] 

Fe-N-CC 0.94 0.83 0.1 M KOH [26] 

Fe-N-CNFs 0.93 0.82 0.1 M KOH [27] 

6%Fe-N-S CNN 0.91 0.85 0.1 M KOH [28] 

FeNx-CN/g-GEL 1.0 0.9 0.1 M KOH [29] 

C-ZIF/LFP 0.98 0.88 0.1 M KOH [30] 

Fe-Fe3C@Fe-N-C 0.97 0.88 0.1 M KOH [31] 

C-FeZIF-1.44-950 0.99 0.864 0.1 M KOH [32] 

FeNC-1000 0.99 0.90 0.1 M KOH [33] 

C−Fe(OH)3@ZIF-1000 0.99 0.88 0.1 M KOH [34] 

Fe2-Z8-C 0.985 0.871 0.1 M KOH [35] 

Fe-N-C-3 0.91 0.805 0.1 M KOH [36] 

Cu@Fe-N-C 1.01 0.892 0.1 M KOH [37] 

mC-TpBpy-Fe 0.92 0.845 0.1 M KOH [38] 

Fe,Co,N-CNP(0.3) 0.979 0.875 0.1 M KOH [39] 

FeNC-20-1000 1.040 0.88 0.1 M KOH [40] 

CPM-99Fe/C 0.95 0.802 0.1 M KOH [41] 

Fe(0)@FeNC 0.946 0.852 0.1 M KOH [42] 

NiFe-N/C 0.99 0.81 0.1 M KOH [43] 

S/N_Fe27 0.93 0.87 0.1 M KOH [44] 

Fe0.5Co0.5Pc-CP 0.937 0.848 0.1 M KOH [45] 

FePcZnPor-CMP 0.936 0.866 0.1 M KOH [46] 

FePhenMOF-ArNH3 0.98 0.78 0.1 M KOH [47] 

Fe NS–PC-800 0.95 0.85 0.1 M KOH [48] 

NFe/CNs-700 0.937 0.863 0.1 M KOH [49] 

COP-TPP(Fe)@MOF-900 0.99 0.828 0.1 M KOH [50] 

Fe0.3Co0.7/NC cages 0.98 0.88 0.1 M KOH [51] 

Fe-NMCSs 1.03 0.86 0.1 M KOH [52] 

5Fe-N/C-NR 1.01 0.90 0.1 M KOH This work 
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Pt/C 0.95 0.86 0.1 M KOH This work 

Eonset: Onset potential; E1/2: Half-wave potential 

 

Table S4. Comparison of the onset potentials and the half-wave potentials toward ORR for literature-

reported Fe-based catalysts and 5Fe-N/C-NR from this work under acidic conditions. 

Electrocatalysts 

Eonset 

(V vs. RHE) 

E1/2 

(V vs. RHE) 

Electrolyte References 

Fe-SAC/NC 0.80 0.69 0.5 M H2SO4 [1] 

Fe-N-HPCC - 0.76 0.1 M HClO4 [3] 

Fe-N-C - 0.657 0.1 M HClO4 [8] 

Fe-N-C-950 0.92 0.78 0.1 M HClO4 [53] 

Meso-Fe–N–C/N–G 0.83 0.72 0.1 M HClO4 [54] 

FeSA-N-C 0.93 0.78 0.1 M HClO4 [55] 

AT-BP-E - 0.78 0.1 M HClO4 [56] 

Fe1-N-NG/RGO 0.96 0.84 0.1 M HClO4 [57] 

FeNC-1000 0.89 0.80 0.5 M H2SO4 [33] 

f-FeCoNC 0.87 0.81 0.1 M HClO4 [58] 

1MIL/40ZIF-1000 0.83 0.79 0.5 M H2SO4 [31] 

C-FeHZ8@g-C3N4-950 0.90 0.78 0.1 M HClO4 [59] 

5Fe-N/C-NR 0.94 0.81 0.1 M HClO4 This work 

Pt/C 0.94 0.81 0.1 M HClO4 This work 
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