Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022

This supplementary information was updated on

21/01/2022.
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The authors regret that an incorrect image was used in Figure S3, panel i for the TEM images
of 3Fe-N/C-NR, and Figure S3 has therefore been replaced in this document. The original
Figure S3 and caption is displayed below for future reference:

Figure S3. SEM images of (a, b, ¢) 3Fe-ZIF-NR and (d, e, f) 3Fe- N/C-NR; TEM images of (g,
h, i) 3Fe-N/C-NR.
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Figure S1. SEM images of (a, b, c) ZIF-8-NR and (d, e, f) N/C-NR; TEM images of (g, h, i) N/C-NR.



Figure S2. SEM images of (a, b, c) 1Fe-ZIF-NR and (d, e, f) 1Fe- N/C-NR; TEM images of (g, h, i) 1Fe-N/C-

NR.



Figure S3. SEM images of (a, b, c) 3Fe-ZIF-NR and (d, e, f) 3Fe- N/C-NR; TEM images of (g, h, i) 3Fe-N/C-

NR.



Figure S4. SEM images of (a, b, c) 5Fe-ZIF-NR and (d, e, f) 5Fe- N/C-NR; TEM images of (g, h, i) 5Fe-N/C-

NR.



Figure S5. SEM images of (a, b, c) 7Fe-ZIF-NR and (d, e, f) 7Fe- N/C-NR; TEM images of (g, h, i) 7Fe-N/C-

NR.



Figure S6. SEM images of (a, b, c) 5Fe-ZIF-RD and (d, e, f) 5Fe- N/C-RD; TEM images of (g, h, i) 5Fe-N/C-

RD.
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Figure S7. C 1s XPS spectra of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR and (d) 7Fe-N/C-NR. (e)

The contents of C-N in all C species (C—C, C-N and C=0) for all samples.
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Figure S8. N 1s XPS spectra of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR and (d) 7Fe-N/C-NR. (e)

The contents of graphitic N in all N species (pyridinic N, pyrrolic N, N-Fe and graphitic N) for all samples.

(f) Influence of iron doping on the N and Fe contents of various catalysts based on XPS analysis.
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Figure S9. CV curves of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR, (d) 7Fe-N/C-NR, (e) 5Fe-N/C-

RD and (f) Pt/C in Nz-saturated and Oz-saturated 0.1 M KOH solution.
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Figure S10. (a) LSV curves and (b) electron-transfer numbers and H20: yields for various 5Fe-N/C-NR

catalyst loadings, at 1600 rpm in 0.1 M KOH electrolyte.
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Figure S11. CV curves of (a) 1Fe-N/C-NR, (b) 3Fe-N/C-NR, (c) 5Fe-N/C-NR, (d) 7Fe-N/C-NR, (e) 5Fe-N/C-

RD and (f) Pt/C in N2-saturated and Oz-saturated 0.1 M HCIOs solution.

Figure S12. (a) SEM and (b) TEM images of 5Fe-N/C-NR after the stability test in acidic electrolyte.
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Table S1. BET surface areas, total pore volumes, miropore volume, meso/macropore volume and

element contents of various samples measured by XPS analysis

Total pore Miropore Meso/macropore
Samples Sger Element contents
volume volume volume (cm3/g)
(m?/g) (at. %)
(cm3/g) (cm3/g)
C N Fe
N/C 939 0.59 0.44 0.15 - - -
1Fe-N/C-NR 819 0.50 0.39 0.11 81.75 851 0.74
3Fe-N/C-NR 612 0.48 0.29 0.19 81.77 7.69 1.01
5Fe-N/C-NR 502 0.44 0.24 0.20 80.86 5.38 1.24
7Fe-N/C-NR 379 0.44 0.19 0.25 80.80 4.84 2.38

Table S2. The contents of different types of C and N for various samples form XPS analysis.

Ctype N type
SRS Pyridinic N—Fe Pyrrolic Graphitic
C—C(%) C—N(%) C=0(%)

N(%) (%) N(%) N(%)
1Fe-N/C-NR 38.20 40.05 21.75 33.28 24.95 20.14 21.63
3Fe-N/C-NR 42.85 36.73 20.42 26.79 22.65 23.52 27.04
5Fe-N/C-NR 46.48 31.04 22.48 25.54 22.46 15.07 36.93
7Fe-N/C-NR 60.41 25.57 14.02 14.85 22.14 27.52 35.49
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Table S3. Comparison of the onset potentials and the half-wave potentials toward ORR for literature-

reported Fe-based catalysts and 5Fe-N/C-NR from this work under alkaline conditions.

Eonset 373
Electrocatalysts Electrolyte References
(V vs. RHE) (V vs. RHE)

Fe-SAC/NC 0.95 0.84 0.1 M KOH [1]
Fe-CZIF-800-10 0.982 0.830 0.1 M KOH [2]
Fe,N-HPCC 0.972 0.898 0.1 M KOH [3]
Fe1sNDC-9 0.968 0.888 0.1 M KOH [4]
Fe(1,10-phen)/KB 0.966 0.861 0.1 M KOH [5]
Fe-N-HPC-AH 0.97 0.87 0.1 M KOH [6]
Fe/N/C 0.94 0.84 0.1 M KOH [7]
Fe-N-C 0.971 0.844 0.1 M KOH [8]
Feo.s-950 0.97 0.89 0.1 M KOH [9]
Fe SAs-N/C-20 0.97 0.909 0.1 M KOH [10]
Fe@Aza-PON 0.9 0.839 0.1 M KOH [11]
SA-Fe-HPC 0.96 0.89 0.1 M KOH [12]
Fo.2No.2Mo.2-900 0.970 0.873 0.1 M KOH [13]
FeCo 0.995 0.920 0.1 M KOH [14]
(Fe,Co)/N-C 1.06 0.863 0.1 M KOH [15]
Fe/N/S-CNTs 0.987 0.887 0.1 M KOH [16]
FeSAs/PTF-600 1.01 0.87 0.1 M KOH [17]
CA-Fe/MF-N900 0.98 0.83 0.1 M KOH [18]
Fe/N/S-PCNT 0.96 0.84 0.1 M KOH [19]
C-FeZIF-900-0.84 0.95 0.84 0.1 M KOH [20]
Fe/N/C-1000-2 1.0 0.87 0.1 M KOH [21]
Fes-NG 0.965 0.826 0.1 M KOH [22]
FesC@NG-800-0.2 0.98 0.83 0.1 M KOH [23]
S-Fe/N/C 0.91 0.84 0.1 M KOH [24]
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FesC@N-CNT
Fe-N-CC
Fe-N-CNFs
6%Fe-N-S CNN
FeN,-CN/g-GEL
C-ZIF/LFP
Fe-FesC@Fe-N-C
C-FeZIF-1.44-950
FeNC-1000
C-Fe(OH)s;@ZIF-1000
Fe2-28-C
Fe-N-C-3
Cu@Fe-N-C
mC-TpBpy-Fe
Fe,Co,N-CNP(0.3)
FeNC-20-1000
CPM-99Fe/C
Fe(O)@FeNC
NiFe-N/C
S/N_Fey;
Feo.5Cog.sPc-CP
FePcZnPor-CMP
FePhenMOF-ArNH3
Fe NS-PC-800
NFe/CNs-700
COP-TPP(Fe)@MOF-900
Feo.3Co0.7/NC cages
Fe-NMCSs

S5Fe-N/C-NR

0.97

0.94

0.93

0.91

1.0

0.98

0.97

0.99

0.99

0.99

0.985

0.91

1.01

0.92

0.979

1.040

0.95

0.946

0.99

0.93

0.937

0.936

0.98

0.95

0.937

0.99

0.98

1.03

1.01
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0.85

0.83

0.82

0.85

0.9

0.88

0.88

0.864

0.90

0.88

0.871

0.805

0.892

0.845

0.875

0.88

0.802

0.852

0.81

0.87

0.848

0.866

0.78

0.85

0.863

0.828

0.88

0.86

0.90

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

This work



Pt/C 0.95 0.86 0.1 M KOH This work

Eonset: Onset potential; E1/2: Half-wave potential

Table S4. Comparison of the onset potentials and the half-wave potentials toward ORR for literature-

reported Fe-based catalysts and 5Fe-N/C-NR from this work under acidic conditions.

Eonset 12
Electrocatalysts Electrolyte References
(V vs. RHE) (V vs. RHE)

Fe-SAC/NC 0.80 0.69 0.5 M H,S04 [1]
Fe-N-HPCC - 0.76 0.1 M HCIO4 [3]
Fe-N-C - 0.657 0.1 M HCIO4 [8]
Fe-N-C-950 0.92 0.78 0.1 M HCIO4 [53]
Meso-Fe-N-C/N-G 0.83 0.72 0.1 M HCIO4 [54]
Fesa-N-C 0.93 0.78 0.1 M HCIO4 [55]
AT-BP-E - 0.78 0.1 M HCIO4 [56]
Fe1-N-NG/RGO 0.96 0.84 0.1 M HCIO4 [57]
FeNC-1000 0.89 0.80 0.5 M H,S04 [33]
f-FeCoNC 0.87 0.81 0.1 M HCIO4 [58]
1MIL/40ZIF-1000 0.83 0.79 0.5 M H,S04 [31]
C-FeHZs@g-C3N4-950 0.90 0.78 0.1 M HCIO4 [59]

5Fe-N/C-NR 0.94 0.81 0.1 M HCIO4 This work

Pt/C 0.94 0.81 0.1 M HCIO4 This work
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