Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting information

Pore Structure Regulation of Biomass-Derived Carbon Materials for

Enhanced Supercapacitor Performance

He Xu^a, Liyuan Wang^{b,*}, Yi Zhang^a, Ye Chen^b, Shuyan Gao^{a,b,*}

^a.School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.

^b.School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China. E-mail address: wangliyuan5450@163.com (L. Wang); shuyangao@htu.cn (S. Gao)

Fig. S1 SEM images of WD-700-1 (a), WDK-700-0 (b), WDK-700-0.5 (c), WDK-700-1.5 (d), WDK-700-2 (e), WDK-600-1 (f), WDK-800-1 (g), and TGA curve of samples in N₂ atmosphere (h).

Fig. S2 (a) N_2 adsorption/desorption curve of WDK-700-0, (b) pore size distribution of WDK-700-0, (c) N_2 adsorption/desorption curve of WDK-700-0.5, (d) pore size distribution of WDK-700-0.5, (e) N_2 adsorption/desorption curve of WDK-700-1.5, (f) pore size distribution of WDK-700-1.5, (g) N_2 adsorption/desorption curve of WDK-700-2, (h) pore size distribution of WDK-700-2, (i) N_2 adsorption/desorption curve of WDK-700-2, (h) pore size distribution of WDK-700-2, (i) N_2 adsorption/desorption curve of WDK-700-2, (h) pore size distribution of WDK-700-2, (i) N_2 adsorption/desorption curve of WDK-800-1, (j) pore size distribution of WDK-600-1, (k) N_2 adsorption/desorption curve of WDK-800-1, (l) pore size distribution of WDK-800-1.

Fig. S3 (a) N_{1s} and (b) O_{1s} high-resolution XPS spectra of WDK-700-0 with deconvoluted peaks, (c) N_{1s} and (d) O_{1s} high-resolution XPS spectra of WDK-700-0.5 with deconvoluted peaks, (e) N_{1s} and (f) O_{1s} high-resolution XPS spectra of WDK-700-1.5 with deconvoluted peaks, (g) N_{1s} and (h) O_{1s} high-resolution XPS spectra of WDK-700-2 with deconvoluted peaks, (i) N_{1s} and (j) O_{1s} high-resolution XPS spectra of WDK-600-1 with deconvoluted peaks, (k) N_{1s} and (l) O_{1s} high-resolution XPS spectra of WDK-800-1 with deconvoluted peaks.

Fig. S4 (a) CV curves of all samples with the different sweep rates: (a) WDK-700-0, (b) WDK-700-0.5, (c) WDK-700-1.5, (d) WDK-700-2, (e) WDK-600-1, (f) WDK-800-1.

Fig. S5 GCD curves of all samples at various current densities from 1 to 30 A g^{-1} in 1 mol L⁻¹ H₂SO₄ electrolyte with the three-electrode system: (a) WDK-700-0, (b) WDK-700-0.5, (c) WDK-700-1.5, (d) WDK-700-2, (e) WDK-600-1, (f) WDK-800-1.

Fig. S6 GCD curves of all samples at various current densities from 1 to 30 A g^{-1} in 1 mol L⁻¹ H₂SO₄ electrolyte with the two-electrode system: (a) WDK-700-0, (b) WDK-700-0.5, (c) WDK-700-1, (d) WDK-700-1.5, (e) WDK-700-2, (f) WDK-600-1, (g) WDK-800-1.

Fig. S7 Coulombic efficiency of WDK-700-1 electrode at 1 A g⁻¹ for 1000 cycles (a) and Coulombic efficiency of

WDK-700-1 electrode at 30 A g^{-1} for 10000 cycles (b)

The activator mechanism of KOH

Using KOH porogen is one effective way to create the micropores. It is generally believed that the productions in this progress below 700 °C are mainly H₂, H₂O, CO, CO₂, K₂O, and K₂CO₃.¹ This process consists of several simultaneous/continuous reactions as indicated in the following Equations (S1)-(S4). Moreover, at the activation temperature around 400 °C, owing to the dehydration of KOH, K₂O has been produced (Equation (S1)).² Then H₂ and CO₂ could be generated as shown in the Equation (S2) and (S3). Hereafter, the K₂O and CO₂ can be converted into K₂CO₃ (Equation (S4)). And the reactions at 570 °C occur by following redox reaction (Equation (S5)):³

$$2\text{KOH} \rightarrow \text{K}_2\text{O} + \text{H}_2\text{O} \tag{S1}$$

$$C + H_2 O \rightarrow H_2 + CO \tag{S2}$$

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{S3}$$

$$CO_2 + K_2 O \rightarrow K_2 CO_3 \tag{S4}$$

$$6\text{KOH} + 2\text{C} \rightarrow 2\text{K} + 3\text{H}_2 + 2\text{K}_2\text{CO}_3 \tag{S5}$$

$$K_2CO_3 \to K_2O + CO_2 \tag{S6}$$

$$C + K_2 O \rightarrow 2K + CO$$
 (S7)

Next, the obtained K₂CO₃ (Equation (4) and (5)) would be transformed into CO₂ and K₂O (Equation (6)) at over than 700 °C, and K₂O could be further reacted with the carbon to produce the metallic K (Equation (7)).^{4, 5} Metallic K (Equation (5) and (7)) would intercalate into the carbon structure and expand the lattice leading to the increasing of pore volume. And the escape of H₂, CO₂, CO and H₂O gas from carbon materials as the physical porogens change some micropores into mesopores thus enhancing the porosity.⁶ After removing the inserted metallic K and K-containing compounds by the process of hydrochloric acid washing, the expanded carbon lattices cannot be recovered, thus reasonably developing the porosity of the materials.^{4, 7}

Sample	C_{1s}	O _{1s}	O _{1s}				N.	N _{1s}			
			C=O	С-ОН	C-O-C	СООН	1 Is	N-6	N-5	N-Q	N-O _x
WDK-700-0	80.9	17.34	0.29	0.31	0.29	0.11	1.76	0.28	0.28	0.19	0.26
WDK-700-0.5	78.35	20.09	0.33	0.25	0.24	0.17	1.56	0.31	0.47	0.16	0.06
WDK-700-1	85.3	12.93	0.18	0.34	0.29	0.19	1.77	0.14	0.40	0.32	0.14
WDK-700-1.5	85.95	12.62	0.17	0.29	0.34	0.20	1.43	0.23	0.33	0.27	0.17
WDK-700-2	82.93	15.68	0.20	0.32	0.31	0.17	1.40	0.22	0.32	0.28	0.18
WDK-600-1	79.41	19.1	0.25	0.33	0.31	0.12	1.49	0.28	0.31	0.28	0.13
WDK-800-1	89.9	7.89	0.16	0.30	0.32	0.21	2.21	0.16	0.40	0.28	0.16

 Table S1 Detailed quantitative element analysis data.

Materials	Surface area	Electrolyte	Capacitance	Е	Р	Reference	
	$[m^2 g^{-1}]$	2	$[F g^{-1}]$	[Wh kg ⁻¹]	[kW kg ⁻¹]		
Walnut peel	2495.4	$\mathrm{H}_2\mathrm{SO}_4$	557.9 ^{a; b}	12.4	5.7	This study	
Cellulose	859	$\mathrm{H}_2\mathrm{SO}_4$	328 a; c	-	-	[9]	
Cotton	2436	КОН	283 a; b	-	-	[10]	
Coconut Shell	2440	$\mathrm{H}_2\mathrm{SO}_4$	221.4 ^{<i>a</i>; g}	7.6	4.5	[11]	
Chitosan	1582	КОН	252 a; c	-	-	[12]	
Bagasse	2064	$\mathrm{H}_2\mathrm{SO}_4$	142 <i>a; c</i>	19.7	0.5	[13]	
Human Hair	1306	КОН	340 a; b	45.3	2.2	[14]	
Rice Husk	1768	КОН	233 ^{<i>a</i>; <i>f</i>}	8.36	-	[15]	
Pomelo Peel	2725	КОН	342 a; e	9.4	0.1	[16]	
Waste Air-laid Paper	1470	КОН	296 a; c	34.3	0.3	[17]	
RF Resins	2178	КОН	222 ^{d; c}	10.1	8.0	[18]	
Pomelo Peel	2191	КОН	342 a; b	17.1	3.8	[19]	
Fungus	1103	КОН	360 a; b	22.0	-	[20]	
NCAs	1626	КОН	354 a; e	-	_	[21]	
Duckweeds	1636	КОН	315 ^{a; b}	8.3	0.1	[22]	

 Table S2. Comparison of electrochemical performances of the carbon materials synthesized from biomass in supercapacitors.

^(a)Capacitance with three-electrode system, ^(b) the current density of 1 A g^{-1} , ^(c) the current density of 0.5 A g^{-1} , ^(d) Capacitance with two-electrode system, ^(e) the current density of 0.2 A g^{-1} , ^(f) the current density of 2 A g^{-1} , ^(g) the current density of 5 A g^{-1} .

Notes and references

- 1 T. Otowa, R. Tanibata, and M. Itoh, *Gas separation & purification*, 1993, 7, 241-245.
- L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, *Energy Environ. Sci.*, 2013, 6, 2497-2504.
- 3 M. Sevilla, A. B. Fuertes and R. Mokaya, *Energy Environ. Sci.*, 2011, 4, 1400-1410.
- 4 J. Gañan, C. M. González-García, J. F. González, E. Sabio, A. Macías-García and M. A. Díaz-Díez, *Appl. Surf. Sci.*, 2004, **238**, 347-354.
- 5 Y. Sudaryanto, S. B. Hartono, W. Irawaty, H. Hindarso and S. Ismadji, *Bioresource Technol*, 2006, **97**, 734-739.
- 6 X. Wei, H. Zou and S. Gao, *Carbon*, 2017, **123**, 471-480.
- 7 X. Wei, Y. Li and S. Gao, J. Mater. Chem. A, 2017, 5, 181-188.
- 8 H. Zhuo, Y. Hu, X. Tong, L. Zhong, X. Peng and R. Sun, Ind. Crops Prod., 2016, 87, 229-235.
- 9 P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu and Z. Lei, J. Phys. Chem. C, 2016, 120, 2079-2086.
- 10 A. Jain, C. Xu, S. Jayaraman, R. Balasubramanian, J. Y. Lee and M. P. Srinivasan, *Microporous Mesoporous Mater.*, 2015, **218**, 55-61.
- 11 X. Deng, B. Zhao, L. Zhu and Z. Shao, *Carbon*, 2015, **93**, 48-58.
- 12 P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong and A. Umar, *Nanoscale*, 2014, **6**, 12120-12129.
- 13 W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, Energy Environ. Sci., 2014, 7, 379-386.
- 14 X. He, P. Ling, M. Yu, X. Wang, X. Zhang and M. Zheng, *Electrochim. Acta*, 2013, **105**, 635-641.
- 15 Q. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Kang and Q. H. Yang, Nanoscale, 2014, 6, 13831-13837.
- 16 J. Pu, C. Li, L. Tang, T. Li, L. Ling, K. Zhang, Y. Xu, Q. Li and Y. Yao, *Carbon*, 2015, **94**, 650-660.
- 17 H. Xuan, Y. Wang, G. Lin, F. Wang, L. Zhou, X. Dong and Z. Chen, *RSC Adv.*, 2016, 6, 15313-15319.
- 18 C. Peng, J. Lang, S. Xu and X. Wang, RSC Adv., 2014, 4, 54662-54667.
- 19 C. Long, X. Chen, L. Jiang, L. Zhi and Z. Fan, *Nano Energy*, 2015, **12**, 141-151.
- 20 J. Zhang, G. Chen, Q. Zhang, F. Kang and B. You, ACS Appl. Mat. Interfaces, 2015, 7, 12760-12766.
- 21 T. Wang, J. Zhang, Q. Hou, and S. Wang, J. Alloys Compd., 2019, 771, 1009-1017.