Supporting information

Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection

Wei Lyuabab, Hanchao Tengb, c, Chenchen Wub, ${ }^{\text {b, }, ~ X i a o t a o ~ Z h a n g a, ~ X i a n g d o n g ~ G u o * b, ~ c, ~}$ Xiaoxia Yang*b,c, Qing Dai*b,c
${ }^{a}$ Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
${ }^{b}$ CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excel/ence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
${ }^{c}$ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China.
*E-mail: daiq@nanoctr.cn; yangxx@nanoctr.cn; guoxd@nanoctr.cn

Fig. S1 The real part of the permittivity of $\alpha-\mathrm{MoO}_{3}$ in RB_{2} is used in this study.

Fig. S2 Normalized electric field distribution $\operatorname{Re}\left(E_{z}\right) / \operatorname{Re}\left(E_{z, \mathrm{PhPs}}\right)$ of freestanding $\alpha-\mathrm{MoO}_{3}$ monolayer PhPs at $\omega=880 \mathrm{~cm}^{-1}$. The wavelengths of the PhPs are indicated by horizontal arrows. Scale bar: 5 nm.

$\alpha-\mathrm{MoO}_{3}$	ε_{c}
air	ε_{m}
Au	ε_{s}

Fig. S3 Side view of the layered structure of monolayer $\alpha-\mathrm{MoO}_{3} /$ nano airgap/Au.

We calculate the dispersion of APhPs via the Fresnel reflection coefficient $r_{p}(q, \omega)$ method by modeling the sample as multilayer structure of monolayer $\alpha-\mathrm{MoO}_{3} /$ nano airgap/Au.

The total reflectivity of this system is determined by following Equations:
$r_{p}=\left(r_{\mathrm{c}}+r_{\mathrm{s}} e^{i 22 \mathrm{k}_{\mathrm{m}}^{\mathrm{Z}}}\right) /\left(1+r_{\mathrm{c}} r_{\mathrm{s}} e^{i 2 k_{\mathrm{m}}^{\mathrm{Z}} \mathrm{d}}\right)$
$r_{\mathrm{c}}=\left(\varepsilon_{\mathrm{m}} \perp k_{\mathrm{c}}^{\mathrm{Z}}-\varepsilon_{\mathrm{c} \perp} \perp k_{\mathrm{m}}^{\mathrm{z}}\right) /\left(\varepsilon_{\mathrm{m}} \perp k_{\mathrm{c}}^{\mathrm{z}}+\varepsilon_{\mathrm{c}} \perp k_{\mathrm{m}}^{\mathrm{z}}\right)$
$r_{\mathrm{s}}=\left(-\varepsilon_{\mathrm{m}} \perp k_{\mathrm{s}}^{\mathrm{z}}+\varepsilon_{\mathrm{c}} \perp \mathrm{k}_{\mathrm{m}}^{\mathrm{z}}\right) /\left(\varepsilon_{\mathrm{m}} \perp k_{\mathrm{s}}^{\mathrm{z}}+\varepsilon_{\mathrm{c}} \perp k_{\mathrm{m}}^{\mathrm{z}}\right)$
Where the subscripts " c ", " m " and "s" denote the $\alpha-\mathrm{MoO}_{3}$, air and Au , respectively. d is the thickness of the monolayer $\alpha-\mathrm{MoO}_{3} . r_{\mathrm{c}}$ and r_{s} represent the reflectivity of the $\alpha-\mathrm{MoO}_{3} /$ air and air $/ \mathrm{Au}$ interfaces, respectively. The ${ }^{\varepsilon_{\mathrm{c}}} \perp, \varepsilon_{\mathrm{m}} \perp$ represent the out-plane dielectric functions of $\alpha-\mathrm{MoO}_{3}$ and air, respectively. k_{i}^{z} is momentum component of the propagating wave along the z axis, which can be obtained by

$$
\begin{equation*}
k_{\mathrm{i}}^{\mathrm{Z}}=\sqrt{\varepsilon_{i} \perp(\omega / c)^{2}-\left[\left(\varepsilon_{i} \perp / \varepsilon_{i} / /\right) \cdot q^{2}\right]} \tag{S4}
\end{equation*}
$$

Where $i=\mathrm{c}, \mathrm{m}$ and s, ω is the frequency of incident light, c is the speed of light in vacuum. ${ }^{\varepsilon_{\mathrm{i}} \perp}$ and $\varepsilon_{\mathrm{i}} / /$ represent the out- and in-plane dielectric functions of the corresponding i material. And the in-plane dielectric constant ${ }^{\varepsilon_{\mathrm{i}}} / /$ of the $\alpha-\mathrm{MoO}_{3}$ is in the x direction (i.e., $\varepsilon_{\text {ix }}$).

Fig. S4 (a) The dispersion relationship of PhPs in RB_{2} by calculating the Fresnel reflection coefficient $r_{\mathrm{p}}(q, \omega)$ of monolayer $\alpha-\mathrm{MoO}_{3}$ (false-color image) and the finite element method (FEM) simulation with COMSOL (green dots). (b) The dispersion relationship of APhPs in RB_{2} by calculating the Fresnel reflection coefficient $r_{\mathrm{p}}(q, \omega)$ of monolayer $\alpha-\mathrm{MoO}_{3} / \mathrm{Au}$ heterostructure (false-color image) and the finite element method (FEM) simulation with COMSOL (green dots).

Fig. 55 (a) Top: Normalized electric-field spectra $\left|\operatorname{Re}\left(E_{z}\right) / \operatorname{Re}\left(E_{z, \text { sub }}\right)\right|$ of APhPs in $12 \times 100 \mathrm{~nm}$ monolayer $\alpha-\mathrm{MoO}_{3}$. Bottom: The electric field distribution of the M1 order mode of APhPs. The electric field cross-section is taken from 0.1 nm below $\alpha-\mathrm{MoO}_{3}$ at $\omega=862 \mathrm{~cm}^{-1}$. Scale bar: 5 nm . (b) Top: Normalized electric-field spectra $\left|\operatorname{Re}\left(E_{z}\right) / \operatorname{Re}\left(E_{z, \text { sub }}\right)\right|$ of APhPs in $20 \times 100 \mathrm{~nm}$ monolayer α MoO_{3}. Bottom: The electric field distribution of the M1 ~M3 order modes of APhPs. The electric field cross-section is taken from 0.1 nm below $\alpha-\mathrm{MoO}_{3}$ at $\omega=862 \mathrm{~cm}^{-1}$. Scale bar: 5 nm . (c) Top: Normalized electric-field spectra $\left|\operatorname{Re}\left(E_{z}\right) / \operatorname{Re}\left(E_{z, \text { sub }}\right)\right|$ of APhPs in $30 \times 100 \mathrm{~nm}$ monolayer $\alpha-\mathrm{MoO}_{3}$. Bottom: The electric field distribution of the M1 ~M4 order mode of APhPs. The electric field cross-section is taken from 0.1 nm below $\alpha-\mathrm{MoO}_{3}$ at $\omega=862 \mathrm{~cm}^{-1}$. Scale bar: 5 nm .

Fig. S6 ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) The corresponding APhPs field distribution when the size of $\alpha-\mathrm{MoO}_{3}$ in y -direction
becomes $100,75,50 \mathrm{~nm}$ respectively. There are no-APhPs exist in the y-direction of dimensional change. The black circle indicates the position where the single molecule to be detected will be placed. The electric field cross-section is taken from 0.1 nm below $\alpha-\mathrm{MoO}_{3}$ at $\omega=862 \mathrm{~cm}^{-1}$.

Fig. S7 Left: Numerical calculation results of the electromagnetic field distribution $\operatorname{Re}\left(E_{z}\right)$ from the $\alpha-\mathrm{MoO}_{3}$ in the z -direction at $820 \mathrm{~cm}^{-1}$. The value is derived from the red dashed line in the figure on the right. gap $=0.6 \mathrm{~nm}, \varepsilon=1$. Right: Simplified side-view schematic of the electric field distribution of APhPs in the s-SNOM measurement. The atomic force microscope (AFM) tip is approximated using a simple electric dipole point-source. The dipole is 5 nm above the $\alpha-\mathrm{MoO}_{3}$ monolayer.

Fig. S8 Real part (black curve) and imaginary part (red curve) of the permittivity of molecule in the frequency range of interest.

Fig. S9 Normalized electric-field spectra $\mid \operatorname{Re}\left(E_{\mathrm{z}}\right) / \operatorname{Re}\left(E_{\mathrm{z}}\right.$, sub $) \mid$ of APhPs in infinite $\alpha-\mathrm{MoO}_{3} / \mathrm{Au}$ heterostructure for enhancement of the molecular vibration (~ 3-folds). APhPs and molecule coupling display a dip feature (red solid curve) and the bare molecule signal spectrum (blue solid curve).

Fig. $\mathbf{S 1 0}$ (a, b, c, d) Normalized electric-field spectra $\left|\operatorname{Re}\left(E_{z}\right) / \operatorname{Re}\left(E_{z, \text { sub }}\right)\right|$ of APhPs when the angle θ between the molecular dipole orientation and the APhPs propagation direction is $15^{\circ}, 30^{\circ}, 60^{\circ}$, and 75°. The coupling spectrum of APhPs and molecule (red solid curve), and the spectrum of molecule signal with enhancement 200-folds (red dashed curve).

