Supporting Information

Three-dimensional Microspheres Constructed by MoS₂ Nanosheets Supported on Multiwalled Carbon Nanotubes for Optimized Sodium Storage

Lei Chen¹, Mao Shen¹, Shi-Bin Ren^{*1}, Yu-Xiang Chen¹, Wei Li¹, and De-Man Han^{**1}

¹ School of Pharmaceutical Chemical and Materials Engineering, Taizhou University,

Taizhou, 318000, P. R. China

Figure S1. The SEM image of MWCNTs.

Figure S2. SEM images of MoS₂-MSs/MWCNTs.

Figure S3. Thermal gravimetric curve of MoS₂-MSs/MWCNTs composite.

Here, MoS_2 was oxidized to MoO_3 completely and MWCNTs were oxidized to CO_2 . Therefore, the MoS_2 content in the composite could be calculated to be about 69.1 wt%, according to the previously reported literatures.

Figure S4. CV curves of the initial five cycles for MoS₂-MSs at 0.1 mV s⁻¹ within 0.01 and 3.0 V (V vs. Na/Na⁺).

Figure S5. Electrochemical performance of MWCNTs electrodes in the voltage window 0.01-3.0 V (V vs. Na/Na⁺): (a) Galvanostatic discharge/charge profiles of 2nd, 5th, 10th, 50th cycles at a current density of 0.1A g⁻¹; (b) Cycling performance at 0.1A g⁻¹ over 100 cycles; (c) Rate capability at different current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 A g⁻¹; (d) the charge-discharge curves at the various current densities.

Figure S6. Electrochemical performances of MoS₂-MSs/MWCNTs || Na₃V₂(PO₄)₃ full cell: (a) The Charge-discharge curves of Na||Na₃V₂(PO₄)₃ and Na||MoS₂-MSs/MWCNTs half batteries; (b) the first GCD curve at 0.1 A g⁻¹ in the voltage range of 0.5-3.3 V; (C) discharge/charge profiles of 5th, 10th, 20th, 50th, 100th cycles at 0.1A g⁻¹; (d) cycling performance at 0.1 A g⁻¹ for 100 cycles.

The MoS₂-MSs/MWCNTs $||Na_3V_2(PO_4)_3|$ full cell was assembled by using MoS₂-MSs/MWCNTs and Na₃V₂(PO₄)₃ as the anode and cathode, respectively. The current density and capacity of the full cell are based on the anode mass. **Figure S5b** shown the first charge and discharge specific capacities of full-cell were 737.03 and 216.68 mA h g⁻¹, respectively, with a low Coulombic efficiency of 29.4 %. The obviously irreversible capacity is mainly attributed to the formation of the SEI layer [S1, S13]. After 100 cycles, the full cell delivers a discharge capacity of 70.96 mA h g⁻¹ (**Figure S5d**).

Figure S7. discharging-charging profiles of MoS₂-MSs/MWCNTs (a) and MoS₂-MSs (b) at various specific currents.

Figure S8. CV curves of MoS₂-MSs at various scan rates from 0.1 to 1.0 mV s⁻¹.

Figure S9. A single step of a GITT experiment.

The D_{Na^+} could be calculated using the formula:

$$D_{Na^+} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B A}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2$$

Where τ represents the constant current pulse time; m_B , M_B , and V_M are the mass, molar weight, and molar volume of the active materials, respectively. A is the total contact

area between the electrolyte and the electrode. ΔE_s and ΔE_{τ} are the changes in steadystate voltage after subtracting the IR drop and the total transient change in cell voltage during a single titration (**Figure S8**).

Figure S10. SEM images of MoS₂-MSs before cycling (a & b); after 100 cycles at 0.1 A g^{-1} (c); MoS₂-MSs/MWCNTs before cycling (d & e); after 100 cycles at 0.1 A g^{-1} (f); after 1000 cycles at

2.0 A g⁻¹ (g-i).

Table S1. Comparison of the electrochemical performance of MoS₂-MSs/MWCNTs composite with previously reported MoS₂-based anode for SIBs.

Samples	Capacity	Retention	Rate property	Ref.
	(mA h g ⁻¹)		(mA h g ⁻¹)	
N-doped MoS ₂ /C	599.7 mA h g ⁻¹	83.4 %	242 mA h g ⁻¹	S2
	at 0.1 A g ⁻¹	(50 cycles)	at 5 A g ⁻¹	
S/MoS ₂ architectures	497.6 mA h g ⁻¹	83.0 %	243.3 mA h g ⁻¹	36
	at 0.1 A g ⁻¹	(100 cycles)	at 2 A g ⁻¹	
MoS ₂ /NCF-MP	471.8 mA h g ⁻¹	101.7 %	217 mA h g ⁻¹	37
	at 0.1 A g ⁻¹	(100 cycles)	at 30 A g ⁻¹	
tulip-MoS ₂ /NG	320 mA h g ⁻¹	99.4 %	216 mA h g ⁻¹	39
	at 0.1 A g ⁻¹	(100 cycles)	at 5 A g ⁻¹	
MoS ₂ @CF	343 mA h g ⁻¹	104.9 %	171 mA h g ⁻¹	40
	at 0.1 A g ⁻¹	(100 cycles)	at 5 A g ⁻¹	
MoS ₂ /CNTs	495.9 mA h g ⁻¹	84.8 %	328.4 mA h g ⁻¹	41
	at 0.2 A g ⁻¹	(80 cycles)	at 0.5 A g ⁻¹	
graphene@MoS ₂ @C	604 mA h g ⁻¹	86.1 %	304 mA h g ⁻¹	S 3

	at 0.1 A g ⁻¹	(110 cycles)	at 5 A g ⁻¹	
MoS ₂ /PDC	475 mA h g ⁻¹	85.6 %	301.5 mA h g ⁻¹	S4
	at 0.2 A g ⁻¹	(340 cycles)	at 5 A g ⁻¹	
MoS ₂ @C-CMC	352 mA h g ⁻¹	81.2 %	205 mA h g ⁻¹	S5
	at 0.08 A g ⁻¹	(100 cycles)	at 1 A g ⁻¹	
MoS ₂ nanosheets	362 mA h g ⁻¹	91.2 %	225 mA h g ⁻¹	S6
/Carbon Fibers	at 0.1 A g ⁻¹	(100 cycles)	at 1 A g ⁻¹	
MoS ₂ -reduced	345 mA h g ⁻¹	88.4 %	245 mA h g ⁻¹	S7
graphene oxide (rGO)	at 0.1 A g ⁻¹	(50 cycles)	at 1 A g ⁻¹	
MoS ₂ /C-MWCNT	617 mA h g ⁻¹	83.9 %	324 mA h g ⁻¹ at	45
	at 0.2 A g ⁻¹	(300 cycles)	20 A g ⁻¹	
Nervous-like	571 mA h g ⁻¹	92.4 %	411 mA h g ⁻¹	46
MoS ₂ /MWCNT	at 0.1 A g ⁻¹	(110 cycles)	at 2 A g ⁻¹	
Graphene-Wrapped	495.1 mA h g ⁻¹	82.5 %	345 mA h g ⁻¹	S8
MoS ₂ (MoS ₂ -G)	at 0.2 A g ⁻¹	(100 cycles)	at 1.6 A g ⁻¹	
MoS ₂ -rGO/HCS	635 mA h g ⁻¹	86.9 %	364 mA h g ⁻¹	S9
	at 0.1 A g ⁻¹	(100 cycles)	at 5 A g ⁻¹	
MoS ₂ @C nanotube	640 mA h g ⁻¹	80 %	370 mA h g ⁻¹	S10
composite	at 0.5 C	(200 cycles)	at 5 C	
MoS ₂ @C nanosheets	477 mA h g ⁻¹	86.3 %	284 mA h g ⁻¹	S11
@MoS ₂ nanorods	at 0.1 A g ⁻¹	(100 cycles)	at 4 A g ⁻¹	
CNT@NCT@W-	530 mA h g ⁻¹		230 mA h g ⁻¹	S12
MoS ₂ /C	at 0.1 A g ⁻¹		at 2 A g ⁻¹	
MoS ₂ -C nanosheets	383.4 mA h g ⁻¹	101.3 %	275 mA h g ⁻¹	S13
	at 0.1 A g ⁻¹	(100 cycles)	at 8 A g ⁻¹	
N-MoS ₂ /C	649 mA h g ⁻¹	78 %	387.9 mA h g ⁻¹	S14
	at 0.2 C	(200 cycles)	at 10 C	
1T-MoS ₂ /CC arrays	768 mA h g ⁻¹	80 %	276 mA h g ⁻¹	53
	at 0.2 A g ⁻¹	(200 cycles)	at 2 A g ⁻¹	
MoS ₂ -MSs/MWCNTs	550 mA h g ⁻¹	94.4 %	227 mA h g ⁻¹	This
composite	at 0.1 A g ⁻¹	(100 cycles)	at 10 A g ⁻¹	work

Table S2. The calculated values of SEI layer resistance (R_{SEI}), charge-transfer resistance (R_{ct}), σ and sodium-ion diffusion coefficient (D_{Na^+}) for both samples.

Samples	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$	σ	D_{Na^+} (cm ² s ⁻¹)
MoS ₂ -MSs	201.7	14.95	117.84	2.14×10 ⁻¹¹
MoS ₂ -MSs/MWCNTs	19.05	78.72	16.67	0.89×10 ⁻¹²

References

[S1] N. Wang, Z. Bai, Y. Qian, J. Yang. Double-Walled Sb@TiO_{2-x} Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion

Batteries. Adv. Mater. 2016, 28, 4126-4133.

[S2] Y. S. Cai, H. L. Yang, J. Zhou, Z. G. Luo, G. Z. Fang, S. N. Liu, A. Q. Pan, S. Q. Liang. Nitrogen doped hollow MoS₂/C nanospheres as anode for long-life sodium-ion batteries. *Chem. Eng. J.* 2017, 327, 522-529.

[S3] Y. Q. Teng, H. L. Zhao, Z. J. Zhang, L. Zhao, Y. Zhang, Z. L. Li, Q. Xia, Z. H. Du, K. Swierczek. MoS₂ Nanosheets Vertically Grown On Reduced Graphene Oxide via Oxygen Bonds with Carbon Coating as Ultrafast Sodium Ion Batteries Anodes. *Carbon* 2017, *119*, 91-100.

[S4] M. Lin, M. Deng, C. Zhou, Y. Shu, L. Yang, L. Ouyang, Q. Gao, M. Zhu. Popcorn derived carbon enhances the cyclic stability of MoS₂ as an anode material for sodium-ion batteries. *Electrochim. Acta* **2019**, *309*, 25-33.

[S5] X. Xie, T. Makaryan, M. Zhao, K. L. V. Aken, Y. Gogotsi, G. Wang. MoS₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. *Adv. Energy Mater.* **2016**, *6*, 1502161.

[S6] Y. Zhang, H. Tao, T. Li, S. Du, J. Li, Y. Zhang, X. Yang. Vertically Oxygen-Incorporated MoS₂ Nanosheets Coated on Carbon Fibers for Sodium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10*, 35206-35215.

[S7] W. Qin, T. Chen, L. Pan, L. Niu, B. Hu, D. Li, J. Li, Z. Sun. MoS₂-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. *Electrochim. Acta* **2015**, *153*, 55-61.

[S8] S. Anwer, Y. Huang, B. Li, B. Govindan, K. Liao, W. J. Cantwell, F. Wu, R. Chen, L. Zheng. Nature-Inspired, Graphene-Wrapped 3D MoS₂ Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. *ACS Appl. Mater. Interfaces* 2019, *11*, 22323-22331.

[S9] X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, Z. Wen. Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS₂ for Lithium and Sodium Storage. *ACS Nano* **2018**, *12*, 1592-1602.

[S10] X. Zhang, X. Li, J. Liang, Y. Zhu, Y. Qian. Synthesis of MoS₂@C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. Small 2016, 12, 2484-2491.

[S11] G. K. Veerasubramani, M.-S. Park, G. Nagaraju, D.-W. Kim. Unraveling the Naion storage performance of a vertically aligned interlayer-expanded two-dimensional MoS₂@C@MoS₂ heterostructure. *J. Mater. Chem. A* **2019**, *7*, 24557-24568.

[S12] Y. Wang, Y. Yang, D. Zhang, Y. Wang, X. Luo, X. Liu, J.-K. Kim, Y. Luo. Interoverlapped MoS₂/C composites with large-interlayer-spacing for high-performance sodium-ion batteries. *Nanoscale Horiz.* **2020**, *5*, 1127-1135.

[S13] W. Zhang, H. Zhou, Z. Huang, S. Li, C. Wang, H. Li, Z. Yan, T. Hou, Y. Kuang.
3D hierarchical microspheres constructed by ultrathin MoS₂-C nanosheets as high-performance anode material for sodium-ion batteries. *J. Energy Chem.* 2020, *49*, 307-315.

[S14] H. Lim, H. Kim, S.-O. Kima, W. Choi. Self-assembled N-doped MoS₂/carbon spheres by naturally occurring acid-catalyzed reaction for improved sodium-ion batteries. *Chem. Eng. J.* **2020**, *387*, 124144.