Supporting Information for

Surfactant-mediated Morphology Evolution and Self-assembly of Cerium Oxides Nanocrystals for Catalytic and Supercapacitor Applications

Xiaodong Hao^{a,b,*}, Shuai Zhang ^{a,c}, Yang Xu^{a,c}, Liangyu Tang^b, Kazutoshi Inoue^b, Mitsuhiro Saito^d, Shufang Ma^a, Chunlin Chen^e, Bingshe Xu^{a,*}, Tadafumi Adschiri^{b*}, Yuichi Ikuhara^{b,d,*} ^aMaterials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China ^bWPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ^cSchool of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China ^dInstitute of Engineering Innovation, the University of Tokyo, Tokyo 113-8656, Japan ^eShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China

Table of Contents

Figure S1 XRD analysis
Figure S2 STEM images of low surfactant modified CeO ₂ NCsS3
Figure S3 TEM selected area electrons diffraction patterns analysis
Figure S4 Nanocrystals size analysis
Table S1 Facets fraction calculation
Figure S5 FTIR spectra analysis
Figure S6 STEM-EELS mapping of surfactant coverage
Figure S7 Self-assembly of cuboctahedra CeO ₂ NCsS9
Figure S8 Self-assembly of multi-layers cubic CeO ₂ NCs superstructure
Figure S9 Thermal stability test of cubic superstructures S11
Figure S10 Second derivative method S12
Table S2 OSC performance
Table S3 Comparison of the OSC performance
Table S4 Comparison of the Supercapacitor performance S15
Figure S11 Variations of the capacitance and Coulombic efficiency
References

Figure. S1. XRD spectra of the as-synthesized Sm-CeONCs with differentadditionamountofsurfactant.

Figure S2. ABF- and HAADF images of (A-D) Sm-CeONC-0, E-H) Sm-CeONC-1, I-L) Sm-CeONC-2, respectively.

Figure S3. The corresponding selected area electrons diffraction patterns of the TEM images in Figure 2. The as-synthesized CeO₂ NCs with surfactant addition: A) Sm-CeONC-0, B) Sm-CeONC-1, C) Sm-CeONC-2, D) Sm-CeONC-3, E) Sm-CeONC-5, F) Sm-CeONC-6, G) Sm-CeONC-8, H) Sm-CeONC-15, I) Sm-CeONC-30, respectively. The camera length is 40 cm.

Figure. S4. Calculated NCs size of Sm-CeONCs with the different surfactant modification from TEM images and XRD spectra analysis.

The NCs size was calculated from the XRD data and TEM images. For the XRD spectra, Debye-Scherrer equation was used for the calculation, in which the full width at half maximum (FWHM) and exact diffraction angle was obtained from the Gaussian fitting process of the spectra. For the TEM images, Image-Pro Plus software was acquired for the statistical data of NCs size distribution. Both of these two calculation results showed the same trend of size decreasing with the increasing addition of surfactant.

Table S1. Facets fraction calculation according to the size a	nd shape in this work.
---	------------------------

Samples	Shape	Size (nm)	Facets fraction (%)		
			111	110	100
Sm-CeONC-1	Truncated octahedron	~11.0	88.43	-	11.57
Sm-CeONC-8	Cube	~6.5 nm	0.62	17.18	82.20
Sm-CeONC-30	Cuboctahedron	~5.0 nm	33.60		63.40

Figure S5. FTIR spectra of the representative samples of Sm-CeONCs with the different surfactant modification.

FT-IR spectra were taken for the confirmation on the existence of organic surfactant on CeO₂ NCs. The peaks in the 2800-3000 cm⁻¹ region are attributed to the C-H stretching modes of methyl and methylene groups. The two strong peaks at around 1535 cm⁻¹ and 1438 cm⁻¹ in all the samples are corresponding to the vibration of asymmetric(v_{as}) and symmetric(v_s) stretching frequency of the carboxylate group, respectively. Previous reports studied the coordination between the carboxylic acid (-COO⁻) and surface metal cations in the oxides by using the wavenumber separation Δ between the vibration bands of v_{as} and v_s : that is, chelating bidentate ($\Delta < 110$ cm⁻¹), bridging ($110 < \Delta < 140$ cm⁻¹) and unidentate ($200 < \Delta < 320$ cm⁻¹). In this work, the values of Δ for all the tested samples are < 100 cm⁻¹, indicating a chelating bidentate coordination type, that both the O from the carboxylic acid group are bonded with one surface cerium cation and the hydrocarbon chain is oriented outward ¹⁻³.

Figure S6. Direct determination of surfactant coverage on the representative samples of Sm-CeONCs by STEM-EELS. (A-C) Elemental mapping of (A) Sm-CeONC-1, (B) Sm-CeONC-8, C) Sm-CeONC-30, respectively. From the left to the right: raw ADF images, overlaid and separate elemental maps of carbon K edge (red), cerium M edge (green), and oxygen K edge (cyan), respectively. The NCs were deposited on silicon substrate and it was confirmed that the detected carbon signals were originated from the surfactant molecules as discussed in the previous report ⁴. Models of surfactant modified CeO₂ NCs of a large truncated octahedron, cube and small cuboctahedron, as displayed in the left.

Figure S7. Self-assembly of cuboctahedra CeO₂ NCs. (A, C) ABF- and (B, D) HAADF-STEM images of cuboctahedra CeO₂ NCs (Sm-CeONC-30) superstructure.

The self-assembly of cuboctahedra CeO_2NCs (Sm-CeONC-30) was also studied. As can be seen, because of the formation of small cuboctahedra NCs that the exposure of {111} facets was largely increased by excessive surfactant modification, the arrangement is changed that from 4-coordinated to 6-coordinated, as clearly shown in the atomic-scale ABF- and HAADFimage in Figure S6C and D. Thus, the FFT pattern from the low magnification ABF- and HAADF- images in Figure S6A and B also indicates a two dimensional NCs superlattice, which is different from that of cubic NCs superlattice in Figure 3A. This above difference can be easily interpreted if we deal with it by an analogy with the different projection of a face centred cubic (fcc) structure, that cubic NCs superlattice is from <011> direction, and the cuboctahedra NCs superlattice is from <111> direction.

Figure S8. Self-assembly of multi-layers cubic CeO₂ NCs superstructure.

The formation of multi-layer cubic NCs ordered superstructures are also achieved in the densely distributed regions. The NCs in the top layer mostly locates atop the corners nearby NCs in the bottom layer, as indicated by the white arrow in the magnified HAADF image. It is also manifested that the {111} corners of NCs is not fully covered by the surfactant, so that the NCs in the top layers favours the location atop the NCs corners from the bottom layer to keep the stable arrangement.

Figure S9. Thermal stability test of cubic CeO2 NCs (Sm-CeONC-8) superstructures. (A-D) HAADF-STEM images of heat treatment of cubic CeO2 NCs superstructures for 1 h in 200,300,400,and500°C,respectively.

Figure S10. Second derivative method for the calculation of M_5/M_4 ratio.

A number of methods have been developed to measure the M_5 / M_4 ratio, while the advantage of second derivative method over them is its insensitiveness to the energy resolution chosen and even the sample thickness. In this work, after the acquisition of Ce M edge spectra (bottom, in red), the corresponding second derivative spectra (up, in blue) is obtained by using the DigtalMicrograph software. Then the positive part of the M_5 and M_4 peaks in the second derivative of the spectra (above the green dot line) is measured using the script of "Measure the EELS peak intensities", subsequently the M_5/M_4 ratio is obtained. It is reported that the linear relationship exsiting between M_5/M_4 ratio and Ce valence state, and the using the reference value is summaried to be 1.31 for Ce³⁺, and 0.91 for Ce⁴⁺, particularly for the nanoparticles.⁵⁻⁸

 $f = ({}^{M}_{5}/M_{4} - 0.91)/(1.31 - 0.91)$

So, in this work, the M_5/M_4 ratio is 0.9954, 1.1530, 1.1281 for Sm-CeONC-1, Sm-CeONC-8, and Sm-CeONC-30, respectively. Therefore, the cubic CeO₂ NCs show the highest concentraton of Ce³⁺ of 60.74%, comparing to 21.34% in truncated octahedra and 54.52%.

Temperature (°C)	CeO ₂ - CP	Sm- CeONC-1	Sm- CeONC-3	Sm- CeONC-6	Sm- CeONC-8	Sm- CeONC-30
200	0.3	10.0	16.8	24.2	16.3	11.9
300	0.4	174.1	215.5	257.5	273.0	290.2
400	2.5	183.3	255.6	319.5	364.6	355.5
500	25.6	252.2	455.6	534.2	620.1	638.0

Table S2. OSC performance of the as-synthesized Sm-CeONCs and CeO₂-CP commercial powders, respectively.

Table S3. Comparison of the OSC performance of the as-synthesized Sm-CeONC-8 and Sm-CeONC-30 with other reported CeO₂ and CeO₂-based nanomaterials.

Catalytic materials	Temperature (°C)	OSC (µmol O/g)	References
Sm-CeONC-30 Sm-CeONC-8	500	638.0 620.1	This work
CeO ₂ tube	-	126	•
CeO ₂ rod nanocrystals	500	84	Q
CeO ₂ polyhedra	500	86	3
CeO ₂ cube		82	
Modified Ce _{0.5} Zr _{0.5} O ₂ (CZ-1a)	_	320	
Modified Ce _{0.5} Zr _{0.5} O ₂ (CZ-2a)	400	615	10
Modified Ce _{0.5} Zr _{0.5} O ₂ (CZ-3a)	_	350	
$Ce_{0.8}Zr_{0.2}O_2$ (CZ80)	430	280	11
$Ce_{0.15}Zr_{0.85}O_2$	-	396	12
Ce(13%)YSZ	500	508	
Pt(0.01%)Ce _{0.25} Zr _{0.75} O ₂	600	410	13
Pr(16%)CeZrO _x	400	588	14
Co ₃ O ₄ /CeO ₂	-	150	15
Au- Co ₃ O ₄ /CeO ₂	250	400	10
CeO ₂ -ZrO ₂	-	294	16
Pd(1%)-CeO ₂ -ZrO ₂ -(5%)BaO	400	586	
5 mol% Hf-CeO ₂	- Low Tomporatura	806	17
3 mol% Zn-CeO ₂	Low remperature	516	
Pd(5%)/CeO ₂ (41%)-ZrO ₂ -Al ₂ O ₃	350	920	18
CeO nanoparticles	-	260	
La-CeO ₂ nanoparticles	550	1160	19
Co-La-CeO ₂ nanoparticles		1540	

Table S4. Comparison of the supercapacitor performance of the as-synthesized Sm-CeONC-30 and Sm-CeONC-30 with the reported CeO_2 and CeO_2 -based nanomaterials in the electrolyte of KOH.

Electrode Materials	Current density (A g ⁻¹) or Scan rates (mV s ⁻¹)	Specific capacitance (F g ⁻¹)	Potential window (V)	Electrolyte (KOH)	References	
Sm-CeONC-30	1 A a ⁻¹	339.5	-0.1-0.5	6M	This work	
Sm-CeONC-8		287.0				
CeO ₂ Nanocubes	5 mV s⁻¹	122.8	0-0.5	2M	20	
CeO ₂ nanorods	1 A a-1	162.5	01045	214	21	
CeO ₂ nanocubes	TAG	149.0	-0.1-0.45	3101		
MnO ₂ /CeO ₂	0.5 A g ⁻¹	274.3	-0.1-0.4	3M	22	
CeO ₂ /Fe ₂ O ₃ CNS	5 mV s ⁻¹	142.6	-0.3-0.3	6M	23	
CeO ₂ /N-doped rGE	2 mV s ⁻¹	230	-0.2-0.5	6M	24	
CeO ₂ NC/RGO	2 A g ⁻¹	282	0-0.5	3M	25	
Hollow sphere CeO ₂ /MCNTs	1 A g ⁻¹	420	0-0.5	6M	26	
Mesoporous CeO ₂ -Zr	1 A g ⁻¹	448.1	0-0.5	2M	27	
MOF derived CeO_2	0.2 A g ⁻¹	502	0-0.5	3 M	28	

Figure S11. Variations of the capacitance and Coulombic efficiency with cycle number for Sm-CeONC-8 and Sm-CeONC-30.

References

- [1] Deacon, G. B., Phillips, R. J., Coordin. Chem. Rev., 1980, 33, 227.
- [2] Nakamoto, K., Infrared and Raman spectra of inorganic and coordination compounds, Wiley, New York, 1977.
- [3] Taguchi, M., Takami, S., Naka, T., Adschiri, T., Cryst. Growth Des., 2009, 9, 5297.
- [4] Hao, X., Chen, C., Saito, M., Yin, D., Inoue, K., Takami, S., Adschiri, T., Ikuhara, Y., Small, 2018, 14, 1801093.
- [5] Fortner, J. A., Buck, E. C., Appl. Phys. Lett., 1996, 68, 3817.
- [6] Wu, L., Wiesmann, H. J., Moodenbaugh, A. R., Klie, R. F., Zhu, Y., Welch, D. O., Suenaga, M., Phys. Rev. B, 2004, 69, 125415.
- [7] Hao, X., Yoko, A., Chen, C., Inoue, K., Saito, M., Seong, G., Takami, S., Adschiri, T., Ikuhara, Y., Small, 2018, 14, 1802915.
- [8] Hao, X., Yoko, A., Inoue, K., Xu, Y., Saito, M., Chen, C., Seong, G., Tomai, T., Takami, S., Shluger, A. L., Xu, B., Adschiri, T., Ikuhara, Y., *Acta Mater.*, 2021, 203, 116473.
- [9] Ju, T.-J., Wang, C.-H., Lin, S. D., Catal. Sci. Technol., 2019, 9, 2118.
- [10] Li, J., Liu, X., Zhan, W., Guo, Y., Guo, Y., Lu, G., Catal. Sci. Technol., 2016, 6, 897.
- [11] Sun, Y., Li, C., Djerdj, I., Khalid, O., Cop, P., Sann, J., Weber, T., Werner, S., Turke, K., Guo, Y., Smarsly, B. M., Over, H., Catal. Sci. Technol., 2019, 9, 2163.
- [12] Arias-Duque, C., Bladt, E., Muñoz, M. A., Hernández-Garrido, J. C., Cauqui, M. A., Rodríguez-Izquierdo, J. M., Blanco, G., Bals, S., Calvino, J. J., Pérez-Omil, J. A., Yeste, M. P., *Chem. Mater.*, 2017, 29, 9340.
- [13] Kamiuchi, N., Haneda, M., Ozawa, M., Catal. Today, 2014, 232, 179.
- [14] Yang, X., Yang, L., Lin, S., Zhou, R., J. Phys. Chem. C, 2015, 119, 6065.
- [15] Gamboa-Rosales, N. K., Ayastuy, J. L., Gutiérrez-Ortiz, M. A., Int. J. Hydrogen Energ., 2016, 41, 19408.
- [16] Yang, L., Yang, X., Zhou, R., J. Phys. Chem. C, 2016, 120, 2712.
- [17] Min, P., Zhang, S., Xu, Y., Li, R., Appl. Surf. Sci., 2018, 448, 435.
- [18] Osaki, T., Materials Research Bulletin, 2019, 118,
- [19] Pizzolitto, C., Menegazzo, F., Ghedini, E., Innocenti, G., Di Michele, A., Cruciani, G., Cavani, F., Signoretto, M., ACS Sustainable Chemistry & Engineering, 2018, 6, 13867.
- [20] Chavhan, M. P., Som, S., Lu, C. H., Materials Letters, 2019, 257, 126598.
- [21] Jeyaranjan, A., Sakthivel, T. S., Molinari, M., Sayle, D. C., Seal, S., Part. Part. Syst. Char., 2018, 35, 1800176.
- [22] Zhang, H., Gu, J., Tong, J., Hu, Y., Guan, B., Hu, B., Zhao, J., Wang, C., *Chem. Eng. J.*, 2016, **286**, 139.
- [23] Arul, N. S., Mangalaraj, D., Ramachandran, R., Grace, A. N., Han, J. I., J. Mater. Chem. A, 2015, 3, 15248.
- [24] Heydari, H., Gholivand, M. B., Applied Physics A, 2017, 123, 187.
- [25] Li, T., Liu, H., Powder Technology, 2018, 327, 275.
- [26] Sun, Z. J., Ge, H., Zhu, S., Cao, X. M., Guo, X., Xiu, Z. H., Huang, Z. H., Li, H., Ma, T., Song, X. M., J. Mater. Chem. A, 2019, 7, 12008.
- [27] Sun, M., Li, Z., Li, H., Wu, Z., Shen, W., Fu, Y. Q., Electrochim. Acta, 2020, 331, 135366.
- [28] Maiti, S., Pramanik, A., Mahanty, S., Chem. Comm., 2014, 50, 11717.