Metal-free bifunctional graphene oxide-based carbocatalysts toward reforming biomass from glucose to 5-hydroxymethylfurfural

Minju Park, * Joonhee Lee, and Byeong-Su Kim*

Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea

E-mail: minju143@yonsei.ac.kr (M.P.); bskim19@yonsei.ac.kr (B.-S.K.)

	Catalyst	Solvent	Catalyst conc. (wt. %)	Temp. (°C)	Time (h)	HMF Yield (%)	Ref
	CrCl ₂	DMA ^a -NaBr	6	100	5	81	[S1]
CrCl ₂		[EMIM]Cl	6	100	3	62	[S2]
	YbCl ₃	[BMIM]Cl ^b	10	140	6	24	[S3]
	SO42-/ZrO2-Al2O3	DMSO	7.6	130	4	48	[S4]
	CrCl ₂	[EMIM]Cl	0.4	100	3	70	[S5]
	Nb ₂ O ₅ -WO ₃	2-BuOH, Water	1000	140	2	52	[S6]
Metal	Sulfated zirconia catalyst	Water	0.5	100	6	3.9	[S7]
	MgCl ₂ , boronic acid	DMA ^a	20	120	4	57	[S8]
	ZrPO	Water	2.5	155	6	46.6	[S9]
	SnPO	[EMIM]Br	10	120	3	58.3	[S10]
	AlPW ₁₂ O ₄₀	DMSO, Water	25	170	4	61.7	[S11]
	Zeolite	Water, DMSO, THF ^c	0.5	180	3	43	[S12]
	Sulfonated graphene quantum dots	DMSO, Water, MIBK ^d , butanol	0.4	170	2	19	[S13]
Non-	Functionalized silica nanoparticles Sulfonated silica particles	[EMIM]Cl	2.7	120	3	13	[S14]
metal		Water, y-valerolactone	0.5	180	4	52.9	[S15]
	Functionalized GO	[EMIM]Cl	0.25	130	3	36.5	this studv
	Boric acid	[EMIM]Cl	2.7	120	3	41	[S1] [S2] [S3] [S4] [S5] [S6] [S7] [S8] [S9] [S10] [S11] [S12] [S13] [S14] [S15] this study [S16] [S17] [S18]
Homo- geneous	H_2SO_4	γ-valerolactone	6.4	130	1	13	[S17]
	H_2SO_4	[BMIM]Cl	1	120	3	66	[S18]

Table S1. Comparison of HMF yields from glucose with relevant literatures.

^aDMA: Dimethylacetamide, ^b[BMIM]Cl: 1-Butyl-3-methylimidazolium Chloride, ^cTHF: Tetrahydrofuran, ^dMIBK: Methyl isobutyl ketone.

		At	omic ratio	(at. %)	
Catalyst	C1s	O1s	B1s	S2p	C/O ratio
GO	71.1	27.4	ND	0.7	2.59
S-GO	66.7	30.9	ND	1.00	2.16
B-GO	84.8	8.71	4.78	ND	9.73
BS-GO	78.2	14.8	4.15	1.67	5.29

Table S2. Relative atomic compositions based on XPS measurements.

Fig. S1 Deconvoluted high-resolution XPS B1s spectra of B-GO and BS-GO.

Fig. S2 Raman spectra of GO and GO-derivatives. An argon ion laser, with a wavelength of 532 nm, was used as an excitation source. The D and G bands appear at 1346 cm⁻¹ and 1600 cm⁻¹, respectively.

Fig. S3 Photograph of GO-based catalysts suspensions in water (conc. of 0.5 mg mL⁻¹).

Entry	Temperature (°C)	Time (h)	Atmosphere	Pressure (MPa)	HMF yield (%)
1	130	1	N_2	0.4	0.02
2	130	2	N_2	0.4	0.06
3	130	3	N_2	0.4	0.05
4	140	1	N_2	0.4	0.02
5	140	2	N_2	0.4	0.07
6	140	3	N_2	0.4	0.1
7	150	1	N_2	0.4	0.04
8	150	2	N_2	0.4	0.3
9	140	1	N_2	0.2	3.7
10	140	2	N_2	0.2	2.6
11	140	3	N_2	0.2	7.3
12	140	4	N_2	0.2	8.1
13	140	0.5	Air	0.1	42.3
14	140	1	Air	0.1	62.1
15	140	2	Air	0.1	56.3
16	140	3	Air	0.1	57.5
17	150	1	Air	0.1	73.4
18	150	2	Air	0.1	78.9

Table S3. HMF yields from fructose under various reaction conditions.

Reaction conditions: Fructose 1.0 g, DMSO 10 mL, without catalyst.

Table S4. HMF yields from fructose with the GO-based carbocatalysts prepared in this study.

Entry	Catalyst	Time (h)	HMF yield (%)
1	No catalyst	1	73.4
2	No catalyst	2	78.9
3	GO	1	88.0
4	GO	2	87.9
5	S-GO	1	88.0
6	S-GO	2	89.2
7	B-GO	1	77.5
8	B-GO	2	81.7
9	BS-GO	1	81.4
10	BS-GO	2	84.3

Reaction conditions: Fructose 1.0 g, catalyst 10 mg, DMSO 10 mL, at 150 °C, under an air atmosphere.

Scheme S1. Schematic representation of diboron complex formation at high catalyst concentrations.

Entry	Catalyst	Time (h)	HMF yield (%)
1	GO	4	4.6
2	GO	8	7.3
3	GO	12	7.8
4	BS-GO	4	1.4
5	BS-GO	8	2.4
6	BS-GO	12	3.3

Table S5. HMF yields from glucose in DMSO.

Reaction conditions: Glucose 1.0 g, catalyst 10 mg, DMSO 10 mL, at 140 °C, under an air atmosphere.

	Yield (%)			
Reaction time (h)	100 °C	120 °C	130 °C	140 °C
1	5.5	16.0	19.1	18.7
2	8.0	17.0	20.5	14.5
3	7.8	18.2	21.0	12.2
4	8.8	16.7	18.9	11.2
5	8.9	15.7	15.2	8.4
6	9.7	17.2	14.8	6.4

Table S6. Changes in HMF yields depending on the temperature and reaction time.

Reaction conditions: Glucose 1.0 g, catalyst 10 mg, EMIM[Cl] 10 mL, at 140 °C, under an air atmosphere.

Fig. S4 Changes in HMF yields from glucose over BS-GO depending on the temperature and reaction time shown in Table S6.

Entry	Catalyst	HMF yield (%)	Conversion of glucose (%)
1	GO	13.2	38.2
2	S-GO	15.1	39.5
3	B-GO	31.4	87.4
4	BS-GO	36.0	95.2

Table S7. HMF yields and conversion of glucose with the GO-based carbocatalysts.

Reaction conditions: Glucose 0.5 g, catalyst 12.5 mg, solvent 5.0 mL, at 130 °C, under an air atmosphere.

Fig. S5 Reaction pathways from *D*-Glucose-2- d_1 to HMF with (a) the hydride transfer route and (b) the ene-diol route.

		Atomic	ratio meas	ured by X	PS
Catalyst			(at. %))	
-	C1s	O1s	B1s	S2p	C/O ratio
B-GO	84.8	8.71	4.78	ND	9.73
BS-GO	78.2	14.8	4.15	1.67	5.29
Post BS-GO	81.0	14.0	4.93	0.13	2.21

Table S8. Relative atomic compositions before and after the catalytic reaction based on XPS measurements.

Post BS-GO was collected after 5th cycle.

References

- (S1) Binder, J. B.; Raines, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. *J. Am. Chem. Soc.* **2009**, *131*, 1979-1985.
- (S2) Pidko, E. A.; Degirmenci, V.; van Santen, R. A.; Hensen, E. J. M. Glucose Activation by Transient Cr²⁺ Dimers. *Angew. Chem. Int. Ed.* **2010**, *49*, 2530-2534.
- (S3) Ståhlberg, T.; Sørensen, M. G.; Riisager, A. Direct Conversion of Glucose to 5-(Hydroxymethyl)Furfural in Ionic Liquids with Lanthanide Catalysts. *Green Chem.* 2010, *12*, 321-325.
- (S4) Yan, H.; Yang, Y.; Tong, D.; Xiang, X.; Hu, C. Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural over SO₄^{2–}/ZrO₂ and SO₄^{2–}/ZrO^{2–}Al₂O₃ Solid Acid Catalysts. *Catal. Commun.* **2009**, *10*, 1558-1563.
- (S5) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural. *Science* **2007**, *316*, 1597-1600.
- (S6) Yue, C.; Li, G.; Pidko, E. A.; Wiesfeld, J. J.; Rigutto, M.; Hensen, E. J. M. Dehydration of Glucose to 5-Hydroxymethylfurfural Using Nb-Doped Tungstite. *ChemSusChem* **2016**, *9*, 2421-2429.
- (S7) Osatiashtiani, A.; Lee, A. F.; Granollers, M.; Brown, D. R.; Olivi, L.; Morales, G.; Melero,
 J. A.; Wilson, K. Hydrothermally Stable, Conformal, Sulfated Zirconia Monolayer Catalysts
 for Glucose Conversion to 5-HMF. *ACS Catalysis* 2015, *5*, 4345-4352.
- (S8) Caes, B. R.; Palte, M. J.; Raines, R. T. Organocatalytic Conversion of Cellulose into a Platform Chemical. *Chem. Sci.* **2013**, *4*, 196-199.
- (S9) Saravanan, K.; Park, K. S.; Jeon, S.; Bae, J. W. Aqueous Phase Synthesis of 5-Hydroxymethylfurfural from Glucose over Large Pore Mesoporous Zirconium Phosphates: Effect of Calcination Temperature. *ACS Omega* **2018**, *3*, 808-820.

(S10) Hou, Q.; Zhen, M.; Liu, L.; Chen, Y.; Huang, F.; Zhang, S.; Li, W.; Ju, M. Tin Phosphate as a Heterogeneous Catalyst for Efficient Dehydration of Glucose into 5-Hydroxymethylfurfural in Ionic Liquid. *Appl. Catal.*, *B* **2018**, *224*, 183-193.

(S11) Wang, X.; Lv, T.; Wu, M.; Sui, J.; Liu, Q.; Liu, H.; Huang, J.; Jia, L. Aluminum Doped Solid Acid with Suitable Ratio of Brønsted and Lewis Acid Sites Synthesized by Electric-Flocculation of Phosphotungstic Acid via Hydrothermal Treatment for Producing 5-Hydroxymethylfurfural from Glucose. *Appl. Catal., A* **2019**, *574*, 87-96.

(S12) Otomo, R.; Yokoi, T.; Kondo, J. N.; Tatsumi, T. Dealuminated Beta Zeolite as Effective Bifunctional Catalyst for Direct Transformation of Glucose to 5-Hydroxymethylfurfural. *Appl. Catal., A* **2014**, *470*, 318-326.

(S13) Li, K.; Chen, J.; Yan, Y.; Min, Y.; Li, H.; Xi, F.; Liu, J.; Chen, P. Quasi-Homogeneous Carbocatalysis for One-Pot Selective Conversion of Carbohydrates to 5-Hydroxymethylfurfural Using Sulfonated Graphene Quantum Dots. *Carbon* **2018**, *136*, 224-233.

(S14) Peng, W.-H.; Lee, Y.-Y.; Wu, C.; Wu, K. C. W. Acid–Base Bi-Functionalized, Large-Pored Mesoporous Silica Nanoparticles for Cooperative Catalysis of One-Pot Cellulose-to-HMF Conversion. *J. Mater. Chem.* **2012**, *22*, 23181-23185.

(S15) Sun, S.; Zhao, L.; Yang, J.; Wang, X.; Qin, X.; Qi, X.; Shen, F. Eco-Friendly Synthesis of SO₃H-Containing Solid Acid via Mechanochemistry for the Conversion of Carbohydrates to 5-Hydroxymethylfurfural. *ACS Sustainable Chem. Eng.* **2020**, *8*, 7059-7067.

(S16) Ståhlberg, T.; Rodriguez-Rodriguez, S.; Fristrup, P.; Riisager, A. Metal-Free Dehydration of Glucose to 5-(Hydroxymethyl)Furfural in Ionic Liquids with Boric Acid as a Promoter. *Chem. Eur. J.* **2011**, *17*, 1456-1464.

(S17) Qi, L.; Mui, Y. F.; Lo, S. W.; Lui, M. Y.; Akien, G. R.; Horváth, I. T. Catalytic

Conversion of Fructose, Glucose, and Sucrose to 5-(Hydroxymethyl)Furfural and Levulinic and Formic Acids in Γ-Valerolactone as a Green Solvent. *ACS Catal.* **2014**, *4*, 1470-1477. (S18) Chidambaram, M.; Bell, A. T. A Two-Step Approach for the Catalytic Conversion of Glucose to 2,5-Dimethylfuran in Ionic Liquids. *Green Chem.* **2010**, *12*, 1253-1262.