Supporting Information

Quasi-solid electrolyte developed on hierarchical rambutan-like γ-AlOOH microspheres with high ionic conductivity for lithium ion batteries

Mengmeng Gao^a, Xiaolei Wu^a, Shuhong Yi^a, Shuwei Sun^a, Caiyan Yu^a, Dong Yan^b, Hui Ying Yang^b, Huiling Zhao^{*a} and Ying Bai^{*a} ^aInternational Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China ^bPillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore

*Corresponding author.

E-mail: zhao@henu.edu.cn (H. L. Zhao); ybai@henu.edu.cn (Y. Bai)

Fig. S1 SEM images for the products at different reaction times.

Fig. S2 The initial charge/discharge profiles of LFP/γ-AlOOH-QSE/Li and LFP/QSE/Li cells.

The initial discharge specific capacities of the LFP/ γ -AlOOH-QSE/Li and LFP/LE/Li cells are similar at 0.1 C (146.6 *vs.* 147.1 mAh g⁻¹), though the latter one exhibits slightly a higher capacity retention (99.3% *vs.* 99.7%).

Fig. S3 Cycling performance of the assembled LFP/ γ -AlOOH-QSE/Li cell at 0.5 C.

Although the specific capacity of LFP/AlOOH-QSE/Li degrades faster at high current rate compared with that of LE (Fig. 2b), the capacity retention could still be remained 95.6% after 80 cycles under high current density of 0.5 C.

Fig. S4 (a) Ionic conductivities of 48 h-QSE, 12 h-QSE symmetrical cells within the temperature range of -20-80 °C; (b) Cycling performances of the assembled cells with 48 h-QSE and 12 h-QSE as electrolytes.

According to Fig. S4b, long-term cycling performance of the assembled cells with 48 h-QSE electrolytes is better than that with 12 h-QSE, further verifying the important influence of morphologies of γ -AlOOH microspheres on the properties of QSE materials.

Fig. S5 Time-dependent voltage profiles for lithium plating/striping experiment for Li/LE/Li symmetric coin cell under the current densities of 0.05, 0.1, and 0.2 mA cm⁻².

Fig. S6 Surface morphologies of Li anodes. (a) The fresh pristine Li anode; (b) LFP/ γ -AlOOH-QSE/Li cell; (c) Conventional LFP cell with LE.

Fig. S7 (a) Combustion test of the γ -AlOOH-QSE sheet; (b-f) Illustration of lighting LED lamp under continuous puncture treatment.

	20th	60th	100th
$R_{ct}(\Omega)$	2489	2858	3030
$W_1(\Omega)$	81	78	83

Table S1 Impedances values for assembled LFP/ γ -AlOOH-QSE/Li cell at different cycles under 0.1 C.

QSE	Ionic conductivity (S cm ⁻¹)	Ref.
hollow silica (HS)	2.50 × 10⁻³ (25 °C)	1
ZIF-8	1.05 × 10⁻⁴ (25 °C)	2
Porous molecular cage	1.00 × 10⁻³ (25 °C)	3
Mg ₂ B ₂ O ₅ /PEO	1.53 × 10⁻⁴ (40 °C)	4
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃	8.05 × 10⁻⁵ (25 °C)	5
MCM-41	6.37 × 10 ⁻⁴ (30 °C)	6
SiO ₂	1.74 × 10 ⁻⁴ (25 °C)	7
γ -Al ₂ O ₃	1.10 × 10⁻³ (25 °C)	8
MOF	3.10 × 10 ^{−4} (25 °C)	9
PVDF-HFP/Al ₂ O ₃	1.00 × 10⁻³ (25 °C)	10
PVDF- PEO/Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃	5.24 × 10 ⁻⁴ (25 °C)	11
PAN/Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃	6.50 × 10⁻⁴ (60 °C)	12
SSZ-13/PEO	1.91 × 10⁻⁴ (60 °C)	13
COF/LiClO ₄	0.26 × 10⁻³ (25 °C)	14
γ-AlOOH-QSE	4.00 × 10⁻³ (25 °C)	This work
PVDF-HFP /Li7La3Zr2O12	1.10 × 10 ^{−4} (25 °C)	15

Table S2 The ionic conductivities of previously proposed QSEs.

References

- 1 J. S. Zhang, Y. Bai. X. G. Sun, Y. C. Li, B. K. Guo, J. H. Chen, G. M. Veith, D. K. Hensley, M. P. Paranthaman, John B. Goodenough and S. Dai *Nano Lett.*, 2015, **15**, 3398-3402.
- 2 C. Sun, J. h. Zhang, X. F. Yuan, J. N. Duan, S. W. Deng, J. M. Fan, J. K. Chang, M. S. Zheng, and Q. F. Dong, ACS Appl. Mater. Interfaces, 2019, 11, 46671-46677.
- 3 A. Petronico, T. P. Moneypenny, Bruno G. Nicolau, Jeffrey S. Moore, Ralph G. Nuzzo, and Andrew. A. Gewirth, *J. Am. Chem. Soc.*, 2018, **140**, 7504-7509.
- 4 O. Sheng, C. B. Jin, J. M. Luo, H. D Yuan, H. Huang, Y. P. Gan, J. Zhang, Y. Xia, C. Liang, W. K. Zhang, and X. Y. Tao, *Nano Lett.*, 2018, **18**, 3104-3112.
- 5 Y. L. Liu, J. R. Liu. Q. Sun, D. W. Wang, K. R. Adair, J. N. Liang, C. Zhang, L. Zhang, S. G. Lu, H.

Huang, X. Song, and X. L. Sun, ACS Appl. Mater. Interfaces, 2019, 11, 27890-27896.

- 6 A. K. Tripathi, R. K. Singh, J. Energy Storage, 2018, 15, 283-291.
- 7 D. Zhou, R. Liu, Y. B. He, F. Li, M. Liu, B. Li, Q. H. Yang, Q. Cai and F. Kang, *Adv. Energy Mater.*, 2016, **6**, 1502214.
- 8 T. H. Xu, J. Sun, S. Yi, D. Wang, Y. Li, Q. Pei, D. Pan, H. Zhao and Y. Bai, *Solid State Ionics*, 2018, 326, 110-115.
- 9 B. M. Wiers, M. L. Foo, Nitash P. Balsara, and Jeffrey R. Long, J. Am. Chem. Soc., 2011, 133, 14522-14525.
- 10 Y. K. Zheng, Y. Tu, Y. Y. Lu and Lynden A. Arche, Adv. Energy Mater., 2014, 4.
- 11 S. Yi, T. Xu, L. Li, M. Gao, K. Du, H. Zhao and Y. Bai, Solid State Ionics, 2020, 355, 115419.
- 12 D. Li, L. Chen. S. Wang, and L. Z. Fan, ACS Appl. Mater. Interfaces, 2018, 10, 7069-7078.
- 13 W. Li, S. Zhang, B. G. Wang, S. Gu, D. Xu, J. Wang, C. H. Chen, and Z. Y. Wen, ACS Appl. Mater. Interfaces, 2018, 10, 23874-23882.
- 14 D. A. Vazquez Molina, G. S. Mohammad. Pour, C. Lee, M. W. Logan, X. F. Duan, James K. Harper, and Fernando J. Uribe Romo, *J. Am. Chem. Soc.*, 2016, **138**, 9767-9770.
- 15 W. Zhang, J. Nie, F. Li, Z. L. Wang and C. Sun, Nano, 2018, 45, 413-419.