## **Supporting Information**

## A mild reduction of Co-doped MnO<sub>2</sub> to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction

Jincan Jia, <sup>a</sup> Lei Li, <sup>b</sup> Xiao Lian, <sup>a</sup> Mingzai Wu, <sup>c</sup> Fangcai Zheng, <sup>d</sup> Li Song, \*<sup>b</sup> Guangzhi Hu <sup>b</sup>

## and Helin Niu \*a

<sup>a</sup> AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, PR China

<sup>b</sup> College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China

<sup>c</sup> Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Physics and Materials Science, Anhui University, Hefei 230039, China.

<sup>d</sup> Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

\*Corresponding author. Email: niuhelin@ahu.edu.cn; songli@mail.zjxu.edu.cn.



Figure S1. Photographs of (a) MnO<sub>2</sub>, (b) MnO<sub>2</sub>@Mn<sub>3</sub>O<sub>4</sub>, (c) Co-doped-MnO<sub>2</sub>, (d) Co-

 $doped-MnO_2 @MnCo_2O_{4.5}.$ 



Figure S2. SEM images of Co-doped MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub> samples at different time (a) 0h, (b) 8h, (c) 12h, (d) 16h, (e) 20h, (f) 24h.

| a | Mn              | 0 | Co |
|---|-----------------|---|----|
| b | ti <del>n</del> |   | -  |
|   |                 |   |    |
| d |                 |   |    |

Figure S3. SEM element mapping of (a) MnO<sub>2</sub>, (b) MnO<sub>2</sub>@Mn<sub>3</sub>O<sub>4</sub>, (c) Co-doped-MnO<sub>2</sub>, (d) Co-doped-MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub>: SEM images showing the area of mapping and element mappings for Mn, O and Co elements.



Figure S4. XPS survey spectrum of MnO<sub>2</sub>, MnO<sub>2</sub>@Mn<sub>3</sub>O<sub>4</sub>, Co-doped-MnO<sub>2</sub>, Co-

doped MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub>.



Figure S5. SEM images of the samples after durability test (a) MnO<sub>2</sub>@Mn<sub>3</sub>O<sub>4</sub>, (b) Codoped MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub>.



Figure S6. N<sub>2</sub> adsorption/desorption isotherm and the corresponding pore size distribution (inset image) of (a)  $MnO_2$ , (b)  $MnO_2@Mn_3O_4$ , (c) Co-doped-MnO<sub>2</sub>, (d)

Co-doped-MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub>.

| Samples                          | Pore size (nm) | $V (cm^3 g^{-1})$ | $S_{BET}\left(m^2g^{1}\right)$ |
|----------------------------------|----------------|-------------------|--------------------------------|
|                                  |                |                   |                                |
| $MnO_2$                          | 5.28           | 0.011             | 12                             |
|                                  |                |                   |                                |
| $MnO_{2}@Mn_{2}O_{2}$            | 3.0            | 0.03              | 15                             |
| 1v111O2( <i>W</i> )1v1113O4      | 5.9            | 0.05              | 15                             |
|                                  |                |                   |                                |
| Co-doped $MnO_2$                 | 5.37           | 0.049             | 17.70                          |
| 1 –                              |                |                   |                                |
|                                  | 75             | 1 17              | 574                            |
| Co-doped $MnO_2(a)MnCO_2O_{4.5}$ | 1.5            | 1.1/              | 5/4                            |
|                                  |                |                   |                                |

Table S1. The BET information of MnO<sub>2</sub>, (b) MnO<sub>2</sub>@Mn<sub>3</sub>O<sub>4</sub>, (c) Co-doped-MnO<sub>2</sub>, (d)

Co-doped-MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub>

Table S2. The Mn:Co atom ratio of the Co-doped-MnO<sub>2</sub> and Co-doped-

| Samples                                                       | Mn (at. %) | Co (at. %) | The Mn:Co atom ratio |
|---------------------------------------------------------------|------------|------------|----------------------|
| Co-doped MnO <sub>2</sub>                                     | 29.8       | 5.5        | 5.4:1                |
| Co-doped MnO <sub>2</sub> @MnCo <sub>2</sub> O <sub>4.5</sub> | 31.1       | 3.5        | 8.9:1                |

MnO<sub>2</sub>@MnCo<sub>2</sub>O<sub>4.5</sub> from ICP-AES analysis.