ZIF-8 engineered bismuth nanosheets arrays for direct nitrate electroreduction with boosted ammonia selectivity

Miao Chen ^a, Jingtao Bi ^a, Xin Huang ^{a, b*}, Jingkang Wang ^{a, b}, Ting Wang ^a, Zhao Wang ^a, Hongxun Hao ^{a, b, c**}

^a National Engineering Research Center of Industrial Crystallization Technology, School of

Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin

300072, China

^c School of Chemical Engineering and Technology, Hainan University, Haikou 570228,

China

* Corresponding author: Xin Huang, Hongxun Hao Email address: x huang@tju.edu.cn, hongxunhao@tju.edu.cn

Part I: Measurement of the Nitrogen-containing chemicals

1.1 Reagents

Sodium nitrate (NaNO₃, \geq 99%), sodium nitrite (NaNO₂, 99.99%), sodium sulphate (Na₂SO₄, 99.99%), sodium hydroxide (NaOH, 99.99%), ammonium chloride (NH₄Cl, 99.998%), sodium salicylate (S3007, \geq 99.5%), potassium sodium tartrate (NaKC₄H₄O₆·4H₂O), sodium hypochlorite (NaClO, available chlorine 10-15%), sodium nitroferricyanide (C₅FeN₆Na₂O, \geq 99%), p-aminobenzene sulfonamide (C₆H₈N₂O₂S, \geq 99%), N- (1 naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₄N₂·2HCl, 98%), phosphoric acid (H₃PO₄, 85%), hydrochloric acid (HCl, 37%) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd.

1.2 Measurement of $NO_3^2 - N$

The concentration of the $NO_3^2 - N$ was determined by the following procedures:

The reagent (A): 8.3 ml of HCl was diluted to 100 ml to prepare 1 M HCl solution. The reagent (B): 0.8 g of NH₂SO₃H was added into 100 mL distilled water to prepare a 0.8wt% solution.

The standard $NO_3^- N$ solution was prepared to calibrate concentration and absorbance curves by the following procedures:

a) $1000 \text{ mg}^{\text{NO}_3^- - \text{N}/\text{L}}$ of Na₂SO₄ solution: 0.6071 g NaNO₃ was first dried in the oven for 4 h, and then dissolved to 100 ml 0.5 M Na₂SO₄. To prepare different standard solutions, the 1000 ppm $^{\text{NO}_3^- - \text{N}}$ solution was diluted to different concentration.

b) 10 mg^{NO₃⁻ N/L in 0.5 M Na₂SO₄: 1 mL of the prepared 1000 mg^{NO₃⁻ N/L Na₂SO₄ was diluted to 100 mL by adding 0.5 M Na₂SO₄ solution.}}

c) Standard solutions: 2, 4, 8, 12, and 16 mL of the prepared 10 mg^{NO₃⁻ - N/L Na₂SO₄ solution were diluted to 20 mL by adding 0.5 M Na₂SO₄ solution respectively. And then 1, 2, 4, 6, 8 and 10 mg^{NO₃⁻ - N/L standard solutions were obtained.}}

The experiments of $NO_3^- N$ determination followed the below procedures: 0.1 mL reagent (A) and 0.01 mL reagent (B) were added into 5 mL of the standard solutions in steps. After placing the mixed solution in a dark environment for 20 minutes, UV-vis measurement was conducted (the final absorbance= A (220 nm) - 2A (275 nm)). The concentration of the $NO_3^- N$ in the electrolyte was also detected by the same methods in the experiments.

1.3 Measurement of NH⁺₄ - N

The concentration of NH_4^+ - N was determined by the Indophenol blue method. The reagents were prepared by the following procedures:

The reagent (A): 5 g of sodium salicylate and 5 g of potassium sodium tartrate were added into 100 mL of 1 M NaOH.

The reagent (B): 3.5 mL of NaClO was added into 100 mL distilled water.

The reagent (C): 0.1 g C₅FeN₆Na₂O was added into 10 mL distilled water.

The standard NH_4^+ - N solution was prepared to calibrate concentration and absorbance curves by the following procedures:

a) $1000 \text{ mg}^{\text{NH}_4^+} - \text{N}/\text{L}$ of Na₂SO₄ solution: 0.3821 g NH₄Cl was first dried in the oven for 4 h, and then dissolved to 100 ml 0.5 M Na₂SO₄.

b) 10 mg^{NH $\frac{1}{4}$ - N/L in 0.5 M Na₂SO₄: 1 mL of the prepared 1000 mg^{NH $\frac{1}{4}$ - N/mL Na₂SO₄ was diluted to 100 mL by adding 0.5 M Na₂SO₄ solution.}}

c) Standard solutions: 0.2, 0.4, 0.8, 1.2, 1.6 and 2 mL of the prepared 10 mg $^{NH_4^+}$ - $^N/L$

Na₂SO₄ were diluted to 20 mL by adding 0.5 M Na₂SO₄ solution respectively. And then 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg^{NH $\frac{4}{4}$ - N/L standard solutions were obtained.}

The experiments of NH_4^+ - N determination followed the below procedures: 2 mL reagent (A) was firstly added into 2 mL standard solutions, then 1 mL reagent (B) and 0.2 mL reagent (C) were added into the standard solutions in steps. After placing the mixed solution in a dark environment for 20 minutes, UV-vis measurement (the maximum λ = 655 nm) was conducted. The concentration of NH_4^+ - N in the experiments was also detected by the same methods.

1.4 Measurement of NO_2^- - N

The color reagent was prepared by adding 5 g $C_6H_8N_2O_2S$ to a mixed solution of 50 ml water and 10 ml phosphoric acid and then dissolving 0.2 g $C_{12}H_{14}N_2\cdot 2HCl$ in the mixed solution, finally dilute above solution to 100 ml.

The standard $NO_2^2 - N$ solution was prepared to calibrate concentration and absorbance curves by the following procedures:

a) $1000 \text{ mg}^{NO_2^-} - N/L$ of Na₂SO₄ solution: 0.4929 g NaNO₂ was first dried in the glass dryer for 4 h, and then dissolved to 100 ml 0.5 M Na₂SO₄.

b) 10 mg^{NO₂⁻ N/L in 0.5 M Na₂SO₄: 1 mL of the prepared 1000 mg^{NO₂⁻ N/L Na₂SO₄ was diluted to 100 mL by adding 0.5 M Na₂SO₄ solution.}}

c) Standard solutions: 0.2, 0.4, 0.8, 1.2, and 1.6 mL of the prepared 10 mg^{NO $\frac{1}{2}$ - N/L Na₂SO₄ solution were diluted to 20 mL by adding 0.5 M Na₂SO₄ solution respectively. And then 0.1, 0.2, 0.4, 0.6, 0.8 mg^{NO $\frac{1}{2}$ - N/L standard solutions were obtained.}}

The experiments of $\frac{NO_2 - N}{2}$ determination followed the below procedures: 0.1 mL

color reagent was added into 5 mL of the standard solutions in steps. After placing the mixed solution in a dark environment for 20 minutes, UV-vis measurement (the maximum λ = 540 nm) was conducted. The concentration of the synthesized NO_2^- - N in the electrolyte was also detected by the same methods in the experiments.

Fig. S1 Calibration curve of NO_3^{-N} concentration and the absorbance of (A (220nm)-2A (270nm)). The

fitting curve shows that the absorbance (A (220nm) - 2A (270nm)) and NO_3^{-N} concentration in good linear relation (y = 0.2449x + 0.0168, R²=0.9999).

Fig. S2 Calibration curve of NH_4^+ - N concentration and the maximum absorbance. The maximum absorbance was measured at 655 nm, and the fitting curve shows good linear relation (y = 0.5787x + 0.0071, R²=0.999).

Fig. S3 Calibration curve of $NO_2^2 - N$ ion concentration and the maximum absorbance. The maximum absorbance was measured at 540 nm, and the fitting curve shows good linear relation (y = 3.291x + 0.002, R²=0.9999).

Fig. S4 (a) the SEM image of BiOI-CC, (b) the SEM image of Bi-CC electrochemical reduced from the BiOI-CC, (c) the SEM image of ZIF-8/Bi-CC, (d-e) SEM image of the interface Bi-CC, (f) TEM image of the nanosheets peeled off the ZIF-8/Bi-CC.

Fig. S5 SAED images of BiOI nanosheets peeled off from the carbon cloth.

Fig. S6 The SEM-EDX images of BiOI-CC shows the even distribution of O, I and Bi.

Fig. S7 (a) the Full XPS spectrum of Bi-CC transformed from BiOI-CC, (b) the O1s spectrum of ZIF-8/Bi-CC.

Fig. S8 The SEM-EDX images of ZIF-8/Bi-CC shows the even distribution of C, N, Zn and Bi.

Fig. S9 TEM-Mapping images of the nanosheets peel off the ZIF-8/Bi-CC.

Fig. S10 Weight loss analysis of ZIF-8/Bi-CC by thermogravimetric analysis (TGA) in air.

Fig. S11 (a), (b) SEM images of BiOCl-CC with different scales and (c) SEM image of the Bi-CC electrochemical reduced from the BiOCl-CC.

Fig. S12 (a), (b) SEM images of BiOBr-CC with different scales and (c) SEM image of the Bi-CC electrochemical reduced from the BiOBr-CC.

Fig. S13 (a) The XRD spectra of carbon cloth, BiOCl-CC, and Bi-CC, respectively; (b) The XRD spectra of the carbon cloth, BiOBr-CC, and Bi-CC, respectively.

Fig. S14 LSV curves of the obtained Bi-CC by the electroreduction from different precursors in 0.5 M Na_2SO_4 .

Fig. S15 N₂ adsorption-desorption isotherms and pore size distributions (desorption branch) of carbon cloth, ZIF-8/CC, Bi-CC and ZIF-8/Bi-CC.

Fig. S16 Characterization of the HER electrocatalytic activity of ZIF-8/CC: (a) LSV curve with IR corrected in 0.5 M Na₂SO₄ within 50 ppm $^{NO_3^-}$ · N; (b) corresponding Tafel plot derived from (a); (c) electrochemical impedance spectroscopy curves of ZIF-8/CC were performed in 0.5 M Na₂SO₄ within 0.01–10⁵ Hz at open circuit voltage; (d) charge current differences plotted against a scan rate in the ZIF-8/CC.

Fig. S17 LSV curves of the obtained Bi-CC with IR corrected in 0.5 M Na₂SO₄ with and without of the addition of 50 ppm $\frac{NO_3^2 - N}{2}$.

Fig. S18 Electrochemical impedance spectroscopy curves of Bi -CC and ZIF-8/Bi-CC were performed in $0.5 \text{ M Na}_2\text{SO}_4$ (pH=3±0.2) within $0.01-10^5 \text{ Hz}$ at open circuit voltage with an amplitude of 10 mV.

Fig. S19 The $NO_3^2 - N$ residual and $NO_2^2 - N$ selectivity of different reaction parameters: (a) PH, (c) current density, (d) Cl⁻ concentration.

Fig. S20Water contact angle measurement of (a) Bi-CC and (b) ZIF-8/Bi-CC.

Fig. S21 (a-c) Electrochemically active surface area measurement of CV in the non-faradaic region for ZIF-8/CC, Bi-CC and ZIF-8/Bi-CC. The catalysts' ECSA was calculated using ECSA = C_{dl}/C_s , where C_{dl} is the catalyst's double-layer capacitance, which was determined by the slope of the obtained linear equation of $(J_a - J_b)/2$ and CV scan rates within a nonfaradaic region. Cs stands for the catalyst's specific capacitance, and Cs = 0.030 mF cm⁻² was adopted in this study.

Fig. S22 Electrochemical reduction of $NO_2^{-} - N$ by ZIF-8/Bi-CC at the current density of 10 mA cm⁻² in 0.5 M Na₂SO₄ and 50 ppm $NO_2^{-} - N$.

Fig. S23 (a), (b) SEM images with different scales, and (c) full XPS spectrum of the ZIF-8/Bi-CC after long-term tested.

Fig. S24 TEM mapping of nanosheets peel form the tested ZIF-8/Bi-CC after long-term test.

Part III: Tables

Table S1. Summary of the BET surface area, C_{dl} , and ECSA of the CC, ZIF-8-CC, Bi-CCand ZIF-8/Bi-CC.

Sample	BET surface area $(m^2 g^{-1})$	C_{dl} (mF cm ⁻²)	ECSA (cm ²)
ZIF-8/CC	17.0	0.8	27.3
Bi-CC	4.0	3.0	99.3
ZIF-8/Bi-CC	30.3	4.6	154.3

 Table S2. The energy efficiency of different current density.

Current density (mA cm ⁻²)	5	10	15	20
Energy consumption	64.6	73	121.4	176
(kwh/kg NO ₃ ⁻ -N)				

Equations
$NO_{3}^{-} + 2H^{+} + 2e^{-} \rightarrow NO_{2}^{-} + H_{2}O_{-}(S1)$
$\overline{NO_{3(ads)}} + e^{-} \rightarrow NO_{3(ads)(S2)}$
$NO_{3(ads)}^{2-} + H_2 O \rightarrow NO_{2(ads)}^{-} + 2OH^{-}(S3)$
$NO_{2(ads)} + e^{-} \rightarrow NO_{2(ads)} + 2H_2O_{(S4)}$
$NO_{2(ads)} + e^{-} \rightarrow NO_{2(ads)}(S5)$
$NO_{2(ads)}^{2-} + H_2O \rightarrow NO_{(ads)} + 2OH^{-} $ (S6)
$NO_{(ads)} + H^{+} + e^{-} \rightleftharpoons HNO_{(ads)}(S7)$
$HNO_{(ads)} + H^{+} + e^{-} \rightleftharpoons H_2NO_{(ads)}(S8)$
$H_2NO_{(ads)} + H^+ + e^- \rightleftharpoons H_2NOH_{(ads)(S9)}$
$H_2NOH_{(ads)} + H^+ \rightleftharpoons H_3NOH_{(ads)}^+(S10)$
$H_2NOH_{(ads)} + 2H^+ + 2e^- \Rightarrow NH_3 + H_2O_{(S11)}$

 Table S3. The nitrate reduction reaction process equations

Ions	Concentration (ppm)		
K	4.13*10 ³		
Na	1.36*104		
Ca	47.8		
Mg	0.27		
Fe	0.03		
Ba	0.02		
Zn	0.069		
Mn	0.74		
Ni	0.008		
Cl-	3.75*104		
SO4 ²⁻	24		
NO3N	14.5		
NH4 ⁺ -N	15.1		
Si	0.82		
Suspended matter	130		
Dissolved solids	$6.45*10^4$		

 Table S4. The composition of the real wastewater (initial PH=6.29)

Catalyst	System	Performance	Detecting method	Ref.
ZIF-8/Bi-CC	Graphite 0.5 M Na ₂ SO ₄ , 50 ppm NO ₃ ⁻ - N (10 mA cm ⁻²)	S (NH3): 84.2%	UV-Vis spectroscopy	This work
Co ₃ O ₄ /Ti	Ir-Ru/Ti 0.05 M Na ₂ SO ₄ , 50 ppm NaNO ₃ (10 mA cm ⁻²)	S (NH ₃): 32%	UV-Vis spectroscopy	1
Co ₃ O ₄ /Ti	Ir-Ru/Ti 0.5 M Na ₂ SO ₄ , 50 ppm NO ₃ ⁻ -N (5.72 mA cm ⁻²)	S (NH ₃): 80%	UV-Vis spectroscopy	2
Co ₃ O ₄ -TiO ₂ /Ti	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S (NH ₃): 80%	UV-Vis spectroscopy	3
Zero valent titanium (ZVT)	ZVT sheet 25.9 mg N/L + 12 ppm Cl (2.0 mA cm - ²)	S (NH ₃): 6%	Ion chromatograph	4
Pd–Cu/cAl ₂ O ₃	graphite 1000 ppm KNO ₃ (10 mA cm ⁻²)	S(NH ₃): 16.5%	UV-Vis spectroscopy	5
Fe@ N-C	Pt 50 mM Na ₂ SO ₄ , 50 ppm NO ₃ ⁻ -N (1.3 V vs. SCE)	S (NH ₃): <75%	Nessler's reagent	6
Ni-Fe ⁰ /Fe ₃ O ₄	Pt $ $ 50ppm NaNO ₃ , 10mM NaCl (5 mA cm ⁻²)	S(NH ₃): 10.44%	UV-Vis spectroscopy	7
Cu ₅₀ Ni ₅₀	Pt 1 M KOH, 10mM KNO ₃ (0V versus RHE)	FE(NH ₃): 93% S(NH ₃): 81.2%	UV-Vis spectroscopy 1H NMR	8
Cu/Cu ₂ O	Pt 0.5 M Na ₂ SO ₄ , 50 ppm NO ₃ ⁻ -N (-0.85V vs RHE)	FE(NH ₃): 95.8% S(NH ₃): 81.2%	UV-Vis spectroscopy 1H NMR	9
Cu nanosheet	Pt 1 M KOH, 10mM KNO ₃ (-0.15 V versus RHE)	FE(NH ₃):99.7%	UV-Vis spectroscopy ¹ H NMR	10
TiO ₂ .x	Pt 0.5 M Na ₂ SO ₄ , 50 ppm NO ₃ ⁻ -N (-1.6 V vs SCE)	FE(NH ₃): 85.0% S(NH ₃): 87.1%	UV-Vis spectroscopy ¹ H NMR	11

 Table S5. Comparison of the NITRR performance among ZIF-8/Bi-CC with other NITRR
 electrocatalysts

Reference in the supporting information

- 1. L. Su, K. Li, H. Zhang, M. Fan, D. Ying, T. Sun, Y. Wang and J. Jia, *Water Res.*, 2017, 120, 1-11.
- 2. C. Li, K. Li, C. Chen, Q. Tang, T. Sun and J. Jia, Sep. Purif. Technol., 2020, 237.
- 3. J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan and M. A. Oturan, Appl Catal B: Environ, 2019, 254, 391-402.
- 4. F. Yao, Q. Yang, Y. Zhong, X. Shu, F. Chen, J. Sun, Y. Ma, Z. Fu, D. Wang and X. Li, *Water Res.*, 2019, **157**, 191-200.
- 5. Z. Zhang, Y. Xu, W. Shi, W. Wang, R. Zhang, X. Bao, B. Zhang, L. Li and F. Cui, *Chemical Engineering Journal*, 2016, **290**, 201-208.
- 6. W. Duan, G. Li, Z. Lei, T. Zhu, Y. Xue, C. Wei and C. Feng, *Water Res*, 2019, 161, 126-135.
- 7. Z. A. Jonoush, A. Rezaee and A. Ghaffarinejad, J. Clean. Prod., 2020, 242.
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng and E. H. Sargent, *J. Am. Chem. Soc.*, 2020, 142, 5702-5708.
- 9. Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angewandte Chemie, 2020, 59, 5350-5354.
- X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, *Appl. Mater. Today*, 2020, 19.
- 11. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533-3540.