Supplement information for "Lattice Distortion-Enhanced Superlubricity of

(Mo, X)S₂ (X= AI, Ti, V and Cr) with Moiré Superlattice"

Peixuan Li^{a, #}, Jiaqi Lu^{a, b, #}, William Yi Wang^{a,c,*}, Xudong Sui^{d,*}, Chengxiong Zou^{a, c}, Ying Zhang^a, Jun Wang^{a, c,*}, Deye Lin^e, Zhibin Lu^d, Haifeng Song^f, Xiaoli Fan^a, Junying Hao^d, Jinshan Li^{a, c}, Weimin Liu^a

^{a.} State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

^{b.} School of Science, Shenyang Ligong University, Liaoning, 110159, China.

^{c.} Chongqing Innovation Center of Northwestern Polytechnical University, 401135, Chongqing

^{d.} State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, 730000, Lanzhou.

e. CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088, China

^{f.} Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

Equal to contribution.

Email: wywang@nwpu.edu.cn ; nwpuwj@nwpu.edu.cn; suixudong@licp.cas.cn

The 2D contour plots of bonding charge density of pure MoS₂ with the twisted angles of 13.17°, 21.79° and 32.20°, respectively are shown in **Fig. S1.**, which indicates the movement of interlayer S atoms. Interlayer S-S repulsion in the AA stacking, where the top layer S atom sits almost above a bottom layer S atom, is improved, and in AB stacking (Bernal stacking) area are weakened. This change of intralayer Mo-S bonds generates the layer corrugations in **Fig. S2.**. Thus, the larger twisted angles in the period range of 0°~30°, the smaller areas of AA stacking are formed which results in the low corrugations of layers, corresponding to the previous studies¹⁻².

Fig. S3-Fig. S5 display the 2D contour plots and 3D isosuface of bonding charge density of non-twisted (Mo, X)S₂ (X= AI, Ti, V and Cr). It is acknowledged that van der Waals (vdW) interactions is influenced by the polarizable bond. One the one hand, the p-type doping for AI, Ti and V result in less polarizable S atoms in the interface layer and lower vdW interactions between interlayer³⁻⁵. On the other hand, the electronegativity difference of X-S (X= AI, Ti, V and Cr) is larger than Mo-S, which implys the stronger polarization of X-S. Since interlayer balance between the S-S hybridization and vdW interactions are broken by the above two competitive factors, atoms are impelled in the direction of perpendicular 2D-plane and the layer deformations are formed. Due to the less polarizable S atoms at the interface for (Mo, X)S₂ (X= AI, Ti), the vdW force decreases and the doped positions peaks at Mo atom layer. Especially, a few bonding charge around the p-orbital element of AI in **Fig. S3**, indicates extreme weak bonding strength, resulting drastic fluctuation of Mo layer. **Fig. S4** shows that the Cr atom is pushed at the bottom point of Mo atom layer owing to the larger vdW attractions by stronger polarizable bonds of Cr-S (1.66-2.58 for Cr-S and 2.16-2.58 for Mo-S, respectively). The V atom also locates at the bottom of Mo layer, which could be attributed to the effect of electronegativity difference is higher than p-type doping.

The schematic diagram of the deposition process for (Mo, X)S₂ (X=AI, Ti, V, Cr) with non-twisted as shown in **Fig. S6**. In addition, the originally experimental data and computational structures have been attached in separate files.

Fig. S1 The 2D contour plots of bonding charge density ($\Delta\rho$) of the twisted angle of 13.17°, 21.79° and 32.20° MoS₂. The bonding length of Mo-S, Mo and S atoms in feature sites are labelled and $\Delta\rho$ = -0.0005~0.013e⁻¹Å⁻³.

Fig. S2 The corrugation of Mo-atom in the up layer along the direction of z axis. (a) is the as-built pure-0° MoS₂, and (b-d) show the twisted angle of 13.17°, 21.79° and 32.20° MoS₂, respectively.

Fig. S3 The 2D contour plots of bonding charge density ($\Delta\rho$) of (a) (Al, Mo)S₂-0°, (b) (Ti, Mo)S₂-0°, (c) (V, Mo)S₂-0°and (d) (Cr, Mo)S₂-0° structures. The X (X=Al, Ti, V, Cr) and Mo atoms in feature sites are labelled and of $\Delta\rho$ = -0.005~0.018e⁻¹Å⁻³.

Fig. S4 3D isosurfaces of $\Delta \rho$ are applied to characterize the non-twisted (Mo, X)S₂ (X= AI, Ti, V and Cr). The $\Delta \rho$ = -0.02,-0.03 e-¹Å⁻³ isosurface are ploted in cyan and blue colors respectively, which identify the atomic sites contributing electrons ($\Delta \rho$ < 0). The bonding length of Mo-S and X-S (X=AI, Ti, V, Cr) are labelled.

Fig. S5 The corrugation of Mo-atom in the up layer of non-twisted (Mo, X)S₂ (X= AI, Ti, V and Cr) along the z axis direction.

Fig. S6 Schematic diagram of the deposition process for (Mo, X)S₂ (X= AI, Ti, V, Cr) with non-twisted in this work.

Reference

- 1 M. M. van Wijk; Schuring, A.; Katsnelson, M. I., et al., Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Mater., 2015, 2, 034010.
- 2 Uchida, K.; Furuya, S.; Iwata, J.-I., et al., Atomic corrugation and electron localization due to moiré patterns in twisted bilayer graphenes. Phys. Rev. B, 2014, 90, 155451.
- 3 Kong, L.; Zhao, Y.; Dasgupta, B., et al., Minimizing isolate catalyst motion in metal-assisted chemical etching for deep trenching of silicon nanohole array. ACS Appl. Mater. Interfaces, 2017, 9, 20981-20990.
- 4 Tsoi, S.; Dev, P.; Friedman, A. L., et al., Van der Waals screening by single-layer graphene and molybdenum disulfide. ACS Nano, 2014, 8, 12410-12417.
- 5 Huttmann, F.; Martinez-Galera, A. J.; Caciuc, V., et al., Tuning the van der Waals interaction of graphene with molecules via doping. Phys. Rev. Lett., 2015, 115, 236101.