Supporting Information

High lithium storage performance of CoO with a dual-carbon-confined nanoarchitecture

Yanbin Chena\&, Jian Songa\&, Yuexian Lia, Qinghua Tiana*, Jizhang Chenb and Li Yangc*

\&Yanbin Chen and Jian Song contributed equally to this work.

aKey Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China

bCollege of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China

cSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

*Corresponding author e-mail address: 09tqinghua@163.com, liyangce@sjtu.edu.cn

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig. S1 SEM image of CNTs.}
\caption{SEM image of CNTs.}
\end{figure}
Fig. S2 EDS spectrum of the CNTs@CoO@PC.

Fig. S3 Plot of Real part of the complex impedance versus $\omega^{-0.5}$ based on Fig. 6d.
The CNTs@PC was prepared with the same way as CNTs@CoO@PC but using the CNTs to replace the CNTs@Co₃O₄. The CNTs@C was prepared with the same way as CNTs@CoO@C but using the CNTs to replace the CNTs@Co₃O₄.
Fig. S6 TG and DSC curves of CNTs@H-CoO@PC.

Fig. S7 Rate performance of CNTs@CoO@C.

Fig. S8 (a) The initial galvanostatic charge/discharge curves of a full cell at 0.2 C (1 C = 175 mA g⁻¹) between 0.01 and 4.2 V; (b) A LED bulb lighted by thus full cell.
For assembling full cells, the commercial LFP electrode (with a loading level of 6 mg/cm2) was employed as the cathode and the as-prepared CNTs@CoO@PC electrode as the anode. The mass loading for LFP is about 5 times larger than that for the CNTs@CoO@PC anode. The CNTs@CoO@PC anode were activated for two cycles with lithium metal counter electrode at 200 mA g$^{-1}$ between 0.01 and 3.0 V before assembling the full cells. The galvanostatic charge/discharge test of the as-assembled full cells was achieved at 0.2 C between 0.01 and 4.2 V based on a LAND CT2001a cell test system.