Supplementary Information

The Electro-catalytic Desalination with CO₂ Reduction and O₂ Evolution

Kaixiang Shen^{1,2}, Qiang Wei^{1,2}, Xin Wang^{1,2}, Qiang Ru¹, Xianhua Hou^{1*}, Guannan Wang^{3*}, Kwan San Hui⁴, Jiadong Shen⁵, Kwun Nam Hui^{6*}, and Fuming Chen^{1,2*}

¹ Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P.R. China, Email: houxianhua@m.scnu.edu.cn; fmchen@m.scnu.edu.cn

² School of Electronic and Information Engineering, South China Normal University, Foshan, 528225

³ College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China. Email: chemwangguannan@gmail.com

⁴ Engineering, Faculty of Science, University of East Anglia, Norwich, UK

⁵ School of Materials Science, South China University of Technology, Guangzhou 510641, P.R. China.

⁶ Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, PR China. Email: bizhui@umac.mo

Figure S1. (a) The designed diagram of the multifunction electrocatalysis desalination device and (b) photo of electro-catalytic desalination setup.

Figure S2. (a) XRD diffraction pattern of bismuth nano-powder, and (b) its SEM image

Figure S3. The LSV curves of Bi electrode in Argon and CO_2 saturated electrolyte. The typical threeelectrode H-type cell is used with Pt counter and saturated calomel electrode (SCE) reference. The two reservoirs are separated by the cation exchanged membrane. Electrolyte: 0.5 M NaHCO₃; scan rate: 5 mVs⁻¹.

Figure S4. (a) XRD diffraction pattern of Ir/C nano-powder, and (b) its SEM image.

Figure S5. The LSV curve of Ir/C electrode in 0.5 M NaHCO₃, scan rate: 5 mVs⁻¹.

Figure S6. (a) The current density and continuous electrochemical performance of multi-function electrocatalysis desalination device at the constant potential of -1.8V applied. (b) The zoom-in sections at the last period in Figure S4a.

Figure S7. NMR spectra of the electrolyte in CO_2RR chamber after electrocatalytic desalination process, indicating formate generation.

Figure S8. pH values in the OER chamber during the electrocatalytic desalination.

Figure S9. The relation between the potential and negative slope in Figure 2(a).

Figure S10. Historical evolution of salt removal rate for capacitive deionization (CDI)¹⁻¹⁷, membrane capacitive deionization (MCDI)^{10, 18-26}, flow-electrode capacitive deionization (FCDI)²⁷⁻³⁷ and faradaic electrode desalination ³⁸⁻⁴⁷ as well as electrocatalytic desalination.

 Table S1. The comparison of different desalination techniques: the electrode material, initial salt concentration, operation voltage/current, salt

 removal rate and energy consumption.

Desalination Technology	Electrode materials	Initial salt concentration (ppm)	Operation voltage/current	Salt removal rate (µg cm ⁻² min ⁻¹)	Energy Consumption [#] (kJ mol ⁻¹)	Year	Ref.
	Carbon aerogel	~50 ~500	1.2 V	~0.99 ~2.05	-	1996	1
	Ti(1.05)/AC C	~5844	1.0 V	~0.35	-	2003	2
	MWCNTs	~3000	1.2 V	~0.45	-	2005	3
Capacitive deionization (CDI)	CNTs-CNFs	~110	1.2 V	~1.97	-	2006	4
	Ordered mesoporous carbon	~25	1.2 V	~7.56	-	2008	5
	Ordered mesoporous carbon	~50	0.8 V	~8.09	-	2009	6
	Commercial Activated Carbon	~1169	1.2 V	~12.84	-	2010	7

Phloroglucin ol-based MC-coated graphite	35000	1.2 V	~ 54.54	-	2011	8
MSP-20 (AC)	~290	1.2 V	~29.79	-	2013	9
<u>CDC</u>			20.07			
AC-QPVP	500	1.0 V	~27.14		2016	10
AC-HNO ₃	500	1.2 V	~28.57	-	2010	10
N-PHCS	500	1.2 V	~48	-	2016	11
PTS-doped PAC	600	1.4 V	39.6	~0.24	2017	12
GR/NMC	300	1.4 V	~55.56	-	2018	13
S-AC N- AC			~ 142.86			
S-AC AC	1000	1 4 V	~38.96	_	2018	14
N-AC AC	1000	1.1 V	~35.06	-		
AC AC			~6.49			
N, P, S co- doped hollow	500	1.2 V	80	-	2018	15

	carbon polyhedra						
	APTES		0.38 mA cm ⁻²	~14.64	~18		
	groups onto activated carbon fabric	~1169	0.5 mA cm ⁻²	~18.73	~24	2019	16
			0.75 mA cm ⁻²	~28.10	~32		
	MOF/HG-2	800	1.4 V	~24.99	-	2020	17
	activated carbon cloth	1000	1.2 V	-	~63	2006	18
	Porous carbon	~5260	1.4 V	~15.58	-	2010	19
Membrane capacitive deionization (MCDI)	Carbon nanotubes	52	1.2 V	~20.41	-	2011	20
	Commercial activated carbon electrode	~292	1.2 V	~77.82	-	2011	21
	Porous carbon	~1169	1.2 V	~ 16.57	~110	2012	22
	Doroug		0.3 A	~13.32			
	carbon electrodes	~1169	0.5 A	~21.52	-	2013	23
	cicculoues		0.8 A	~26.63			

	Pristine AC	500	1.0 V	~20	_	2016	10
	electrodes		1.2 V	~28.57			
	Activated	. 1/1/	0.30 mA cm ⁻²	~15.11	~ 81.17	2018	24
	carbon	carbon ~ 1414 0.89 mA cm ⁻² ~ 39.70 \sim	~ 166.98	2018			
	PCSs	~500	1.2 V	~156.25	-	2018	25
	SiW ₁₂ @PAN I/EGC	500	1.2 V	345 (after 10 mins) 150 (after 40 mins)	-	2020	26
		1100		40 (~50% SRE ^a)			
	Carbon	5900	1 2 V	190 (~40% SRE)		2013	27
	suspension	14200	1.2 V	220 (~20% SRE)		2013	
		32100		340(~12% SRE)			
Flow-electrode capacitive deionization (FCDI)	5% w/w dispersion of activated carbon powder	15000	1.2 V	~39.67	-	2014	28
	YP-50F activated carbon	10000	3.0 mA cm ⁻²	78.6	126.4	2015	29
			0.40 mA cm ⁻²				
	TE-3 activated	1170	0.60 mA cm ⁻²	16.2	177.0	2016	30
	carbon beads		0.80 mA cm ⁻²	19.8	345.6		

			23.4	456.0		
Carbon suspension	35000	1.2 V	~39.85	-	2017	31
		0.573 mA cm ⁻²	18	97.3		
DADCO and		1.719 mA cm ⁻²	54.6	187.0		
Noritactivate	2000	2.865 mA cm ⁻²	76.2	289.9	2018	32
d charcoal		3.438 mA cm ⁻²	90	329.5		
		4.011 mA cm ⁻²	106.8	362.7		
AC + CB ∥ CuHCF + CB	10000	1.4 V	13	-	2019	33
TEMPO	5860	0.06 mA cm ⁻²	1.986	78.2	2019	34
		0.47 mA cm ⁻²	9.6	40.95		
Activated		1.42 mA cm ⁻²	37.8	52.2		
carbon black,	9000	2.38mA cm ⁻²	78.6	98.07	2020	35
/ferrocyanide		3.33mA cm ⁻²	103.2	135.0		
		4.28 mA cm ⁻²	162	160.0		

	DARCO, and		0.909 mA cm ⁻²	67.2	35.79		
	Noritactivate d charcoal	1000				2020	36
			1.11 mA cm ⁻²	39.762	133.91		
				27.47	~125		
	Carbon	1000	1.2 V			2020	36
	Black			44.41	~122		
	50 mM/50		0 06 mA cm ⁻²	1 90	1 57		
	mM Ferri-	3000		1.50	110 /	2020	37
	/ferrocvanide		1.11 mA cm ⁻²	39.76	133.91		
	, , , , , , , , , , , , , , , , , , ,						
	ΝΜΟΙΙΑσ	Seawater	0.5 mA cm^{-2}	_	~151.3	2012	38
		(~18500 Cl ⁻)			(removal 25% Cl ⁻)	2012	
		~35000	1 mA	_	~ 0.04 kwh m ⁻³	2014	39
		35000	1 1112 ¥		0.04 KWII III	2014	
	BiOCl NMO	~795	100 mA g ⁻¹	160 71	96.88		
						2017	40
				100.71	90.00	2017	
Faradaic electrode	AgCl Na _{0.44}	~ 891	100 m	168 37	_	2017	41
desalination	MnO_2	071	100 111 1 5	100.57	-	2017	
	FePO ₄ @RG	~2500	100 m	~145.45	~75.11	2018	42
	O AC	10	100 111 1 5	1-	75.11	2010	
	VClallNaI	19000	0.22 mA cm^{-2}	~ 44 44	10.27	2018	43
	, Ci3 1 (ui	17000			10.27	2010	
	NVO@rGO	250	1 2 V	~1 70	-	2019	44
	Ag@rGO	200	1.2 ,			2017	

	NTP/rGO AgNPs/rGO	2500	100 mA g ⁻¹	~79.72	~26.89	2019	45
	Zn Pt/C	3000	0.25 mA cm ⁻²	8.9	80.1(release)	2020	46
			0.125 mA cm ⁻²	5	19		
	Zn-ZnCl ₂	2000	1.0 mA cm ⁻²	34	81.3	2020	47
			2.0 mA cm ⁻²	64	191.4		
	Bi n-TEC powered by PV cell	10000	peak at ~6 mA	-	~77.68°		
	Bi n-TEC powered by DC				~388.40 ^d	2019	48
		10000	peak at ~9.98 mA	-	~116.52 ^e		
Electrocatalytic desalination (ED)					~73.20°		
		15000	$\sim 3.6 \text{ mA cm}^{-2 \text{ f}}$	134.48	-		
	Bi Ir/C		$\sim 6.5 \text{ mA cm}^{-2 \text{ f}}$	228.41			
			-1.2 V ^b	16.49		2021	This work
		12000	-1.4 V	36.53	-		
			-1.6 V	91.53			

[#] Energy consumption only includes the desalination devices without the consideration of pumps/equipment consumption.

^a SRE: salt removal efficiency, the change in NaCl concentration is divided by the initial NaCl concentration.

^b The voltage is relative to the saturated calomel electrode (SCE).

- ^e The device is equipped with 5 desalination cell (DS) and desalinate to 50%.
- ^d The device is equipped with 1 desalination cell and desalinate to 50%.
- ^e The device is equipped with 3 desalination cell (DS) and desalinate to 50%

^f At applied voltage of -1.8V vs. SCE, the current density can be offered stably.

References

- 1. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, *Journal of The Electrochemical Society*, 1996, **143**, 159-169.
- 2. M.-W. Ryoo and G. Seo, *Water Research*, 2003, **37**, 1527-1534.
- 3. K. Dai, L. Shi, J. Fang, D. Zhang and B. Yu, *Materials Letters*, 2005, **59**, 1989-1992.
- 4. X. Z. Wang, M. G. Li, Y. W. Chen, R. M. Cheng, S. M. Huang, L. K. Pan and Z. Sun, *Electrochemical and Solid-State Letters*, 2006, **9**, E23.
- 5. L. Zou, L. Li, H. Song and G. Morris, *Water Research*, 2008, **42**, 2340-2348.
- 6. L. Li, L. Zou, H. Song and G. Morris, *Carbon*, 2009, 47, 775-781.
- 7. R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning and A. van der Wal, *The Journal of Physical Chemistry Letters*, 2010, **1**, 205-210.
- 8. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli and S. Dai, *Environmental Science & Technology*, 2011, **45**, 10243-10249.
- 9. S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. S. Atchison, K. J. Keesman, S. Kaskel, P. M. Biesheuvel and V. Presser, *Energy & Environmental Science*, 2013, **6**, 3700-3712.
- T. Wu, G. Wang, F. Zhan, Q. Dong, Q. Ren, J. Wang and J. Qiu, *Water Research*, 2016, 93, 30-37.
- 11. S. Zhao, T. Yan, H. Wang, G. Chen, L. Huang, J. Zhang, L. Shi and D. Zhang, *Applied Surface Science*, 2016, **369**, 460-469.
- 12. R. L. Zornitta, F. J. García-Mateos, J. J. Lado, J. Rodríguez-Mirasol, T. Cordero, P. Hammer and L. A. M. Ruotolo, *Carbon*, 2017, **123**, 318-333.
- 13. T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H. S. Park and D. Zhang, *Environmental Science:* Nano, 2018, 5, 2722-2730.
- 14. T. Yan, B. Xu, J. Zhang, L. Shi and D. Zhang, *RSC Advances*, 2018, **8**, 2490-2497.
- 15. J. Zhang, J. Fang, J. Han, T. Yan, L. Shi and D. Zhang, *Journal of Materials Chemistry A*, 2018, **6**, 15245-15252.
- 16. A. C. Arulrajan, D. L. Ramasamy, M. Sillanpää, A. van der Wal, P. M. Biesheuvel, S. Porada and J. E. Dykstra, *Advanced Materials*, 2019, **31**, 1806937.
- 17. J. Feng, L. Liu and Q. Meng, *Journal of Colloid and Interface Science*, 2021, **582**, 447-458.

- 18. J.-B. Lee, K.-K. Park, H.-M. Eum and C.-W. Lee, *Desalination*, 2006, **196**, 125-134.
- 19. P. M. Biesheuvel and A. van der Wal, *Journal of Membrane Science*, 2010, **346**, 256-262.
- 20. H. Li and L. Zou, *Desalination*, 2011, 275, 62-66.
- 21. P. M. Biesheuvel, R. Zhao, S. Porada and A. van der Wal, *Journal of Colloid and Interface Science*, 2011, **360**, 239-248.
- R. Zhao, P. M. Biesheuvel and A. van der Wal, *Energy & Environmental Science*, 2012, 5, 9520-9527.
- 23. R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel and A. van der Wal, *Water Research*, 2013, **47**, 1941-1952.
- 24. L. Wang and S. Lin, *Water Research*, 2018, **129**, 394-401.
- 25. Y. Li, X. Xu, S. Hou, J. Ma, T. Lu, J. Wang, Y. Yao and L. Pan, *Chemical Communications*, 2018, **54**, 14009-14012.
- 26. H. Liu, J. Zhang, X. Xu and Q. Wang, *Chemistry A European Journal*, 2020, **26**, 4403-4409.
- 27. S.-i. Jeon, H.-r. Park, J.-g. Yeo, S. Yang, C. H. Cho, M. H. Han and D. K. Kim, *Energy & Environmental Science*, 2013, **6**, 1471-1475.
- 28. Y. Gendel, A. K. E. Rommerskirchen, O. David and M. Wessling, *Electrochemistry Communications*, 2014, **46**, 152-156.
- 29. K. B. Hatzell, M. C. Hatzell, K. M. Cook, M. Boota, G. M. Housel, A. McBride, E. C. Kumbur and Y. Gogotsi, *Environ Sci Technol*, 2015, **49**, 3040-3047.
- 30. G. J. Doornbusch, J. E. Dykstra, P. M. Biesheuvel and M. E. Suss, *Journal of Materials Chemistry A*, 2016, **4**, 3642-3647.
- 31. Y. Cho, K. S. Lee, S. Yang, J. Choi, H.-r. Park and D. K. Kim, *Energy & Environmental Science*, 2017, **10**, 1746-1750.
- 32. C. He, J. Ma, C. Zhang, J. Song and T. D. Waite, *Environmental Science & Technology*, 2018, **52**, 9350-9360.
- 33. J. Chang, F. Duan, H. Cao, K. Tang, C. Su and Y. Li, *Desalination*, 2019, 468, 114080.
- 34. J. Wang, Q. Zhang, F. Chen, X. Hou, Z. Tang, Y. Shi, P. Liang, D. Y. W. Yu, Q. He and L.-J. Li, *Journal of Materials Chemistry A*, 2019, **7**, 13941-13947.
- 35. Q. Wei, Y. Hu, J. Wang, Q. Ru, X. Hou, L. Zhao, D. Y. W. Yu, K. San Hui, D. Yan, K. N. Hui and F. Chen, *Carbon*, 2020, **170**, 487-492.

- 36. J. Ma, C. Zhang, F. Yang, X. Zhang, M. E. Suss, X. Huang and P. Liang, *Environmental Science & Technology*, 2020, **54**, 1177-1185.
- 37. F. Chen, J. Wang, C. Feng, J. Ma and T. David Waite, *Chemical Engineering Journal*, 2020, **401**, 126111.
- 38. M. Pasta, C. D. Wessells, Y. Cui and F. La Mantia, *Nano Letters*, 2012, **12**, 839-843.
- 39. M. Ye, M. Pasta, X. Xie, Y. Cui and C. S. Criddle, *Energy & Environmental Science*, 2014, 7, 2295-2300.
- 40. F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang and H. Y. Yang, *Energy & Environmental Science*, 2017, **10**, 2081-2089.
- 41. F. Chen, Y. Huang, L. Guo, M. Ding and H. Y. Yang, *Nanoscale*, 2017, 9, 10101-10108.
- 42. L. Guo, Y. Huang, M. Ding, Z. Y. Leong, S. Vafakhah and H. Y. Yang, *Journal of Materials Chemistry A*, 2018, **6**, 8901-8908.
- 43. X. Hou, Q. Liang, X. Hu, Y. Zhou, Q. Ru, F. Chen and S. Hu, *Nanoscale*, 2018, **10**, 12308-12314.
- 44. Z. Yue, Y. Ma, J. Zhang and H. Li, *Journal of Materials Chemistry A*, 2019, 7, 16892-16901.
- 45. Y. Huang, F. Chen, L. Guo, J. Zhang, T. Chen and H. Y. Yang, *Desalination*, 2019, **451**, 241-247.
- J. Dai, N. L. Win Pyae, F. Chen, M. Liang, S. Wang, K. Ramalingam, S. Zhai, C.-Y. Su, Y. Shi, S. C. Tan, L. Zhang and Y. Chen, ACS Applied Materials & Interfaces, 2020, 12, 25728-25735.
- 47. J. Dai, J. Wang, X. Hou, Q. Ru, Q. He, P. Srimuk, V. Presser and F. Chen, *ChemSusChem*, 2020, **13**, 2792-2798.
- 48. B.-j. Kim, G. Piao, S. Kim, S. Y. Yang, Y. Park, D. S. Han, H. K. Shon, M. R. Hoffmann and H. Park, *ACS Sustainable Chemistry & Engineering*, 2019, 7, 15320-15328.