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Computational details

All first-principles calculations were performed using the Vienna ab initio simulation package 

(VASP).1, 2 The projector wave-augmented method and the Perdew-Burke-Ernzerhof 

parameterized generalized gradient approximation were used to describe the core-electron 

interaction and the exchange-correlation interaction, respectively.3-5 The electronic wave function 

was expanded in a plane wave basis with a cutoff kinetic energy of 455 eV. The convergence 

threshold for the total energy was set to  eV. For geometrical optimizations, both the 1.0 × 10 ‒ 6

lattice parameters and the atomic coordinates were fully optimized until the force acting on each 

atom less than 5 meV/Å. The -centered Monkhorst-Pack schemed k-mesh was adopted to sample 

the first Brillouin zone in such a way that  , where  and  are the in-plane lattice 𝑎𝑖𝑘𝑖 ≈ 53 𝑎𝑖 𝑘𝑖

constant and the number of subdivisions along the corresponding reciprocal lattice vector i, 

respectively. Along the out-of-plane direction, a vacuum layer of around 20 Å was inserted to 

eliminate the spurious interaction between layers. The phonon calculations were performed based 

on a  Ag2S supercell using the finite displacement method as implemented in the 5 × 5 × 1

PHONOPY code.6

The particle swarm optimization algorithm as implemented in the CALYPSO code was deployed 

to search for the ground-state structure of 2D Ag2S.7-9 Unit cells containing 4 formula units (f.u.) 

of Ag2S, namely Ag8S4, were considered. The number of generations was set to 30. In the first 

generation, 30 2D Ag8S4 structures were randomly generated and geometrically optimized using 

VASP. Among these optimized structures, 70 % of the lowest-energy structures were selected as 

parent structures and evolved into the next generation, whereas the other 30 % of the Ag8S4 

structures in the next generation were randomly generated. Considering the intensive 

computational cost, the cutoff kinetic energy of the plane wave basis for electronic wave function 

expansion was reduced to 400 eV. The convergence criterion for the total energy and the geometric 

optimization was relaxed to  eV and  eV, respectively. The k-mesh was reduced 2 × 10 ‒ 4 2 × 10 ‒ 3

to .The identified lowest-energy 2D Ag2S structures were further optimized using the 𝑎𝑖𝑘𝑖 ≈ 13

tighter calculation setup mentioned above.



S4

Tight-binding model

The basis set of the tight-binding model is  in the real space, where {𝜙𝑆(�⃗�),  𝜙𝐴𝑔1
(�⃗�),  𝜙𝐴𝑔2

(�⃗�)}
 is the localized wavefunction centred at site , as shown in Figure 1a. 𝜙𝑖(�⃗�) 𝑖 = 𝑆,  𝐴𝑔1,  𝐴𝑔2

 is mainly composed of the S-p orbitals, whereas  and  are mainly made up 𝜙𝑆(�⃗�) 𝜙𝐴𝑔1
(�⃗�) 𝜙𝐴𝑔2

(�⃗�)

of the Ag-dxy,  orbitals (see Figure 2). In momentum space, Eq. (1) becomes 
𝑑

𝑥2 ‒ 𝑦2

, where  and 
𝐻0 = ∑⃗

𝑘

Ψ †
�⃗� 𝐻0(�⃗�)Ψ�⃗� Ψ�⃗� = (𝑐𝑆�⃗�,𝑐𝐴𝑔1�⃗�,𝑐𝐴𝑔2�⃗�), �⃗� = (𝑘1, 𝑘2)

𝐻0(�⃗�) = (𝐸00 𝐸01 𝐸02
𝐸 ∗

01 𝐸11 𝐸12
𝐸 ∗

02 𝐸 ∗
12 𝐸22

) (𝑆1)

𝐸00 = 𝜖𝑆

𝐸01 = 2𝑡1cos (𝑎
2

𝑘1)
𝐸02 = 2𝑡1cos (𝑎

2
𝑘2)

𝐸11 = 𝜖𝐴𝑔 + 2𝑡3cos (𝑎𝑘2) + 2𝑡4cos (𝑎𝑘1)

𝐸12 = 4𝑡2cos (𝑎
2

𝑘1)cos (𝑎
2

𝑘2)
𝐸22 = 𝜖𝐴𝑔 + 2𝑡3cos (𝑎𝑘1) + 2𝑡4cos (𝑎𝑘2)

where  is the lattice constant of the planar Lieb lattice (see Figure 1a). If the NNN 𝑎 = |�⃗�1| = |�⃗�2|
spin-orbit coupling interaction in Eq. (2) is taken into account, the Hamiltonian reads

𝐻(�⃗�) = (𝐻0 + 𝐻𝑆𝑂𝐶 0
0 𝐻0 + 𝐻 †

𝑆𝑂𝐶) (𝑆2)

𝐻𝑆𝑂𝐶(�⃗�) = (0 0 0

0 0 ‒ 4𝑖𝜆sin (𝑎
2

𝑘1)sin (𝑎
2

𝑘2)
0 4𝑖𝜆sin (𝑎

2
𝑘1)sin (𝑎

2
𝑘2) 0 )

Due to the spin degeneracy, we will restrict ourselves to the spin-up part of the Hamiltonian. The 

TB bands given by the Hamiltonian Eq. (S1) and Eq. (S2) are fitted to CB-II, VB-I and VB-II of 
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the calculated DFT bands at the PBE and HSE06 level. The TB bands match well with the DFT 

bands around the Brillouin zone centre as shown in Figures 3 and S18. The fitted parameters are 

summarized in Table S2.

At the  point, the eigen-energies of the Hamiltonian are calculated to be𝑀 '
𝑢.𝑐.

𝐸1(𝑀 '
𝑢.𝑐.) = 𝜖𝑆 (𝑆3)

𝐸2(𝑀 '
𝑢.𝑐.) = 𝜖𝐴𝑔 ‒ 2𝑡3 ‒ 2𝑡4 + 4|𝜆| (𝑆4)

𝐸3(𝑀 '
𝑢.𝑐.) = 𝜖𝐴𝑔 ‒ 2𝑡3 ‒ 2𝑡4 ‒ 4|𝜆| (𝑆5)

One can see that the double degeneracy at  point (VBM) can only be lifted by the SOC 𝑀 '
𝑢.𝑐.

interaction, which is observed in our DFT calculations (Figures 2a and S22). In addition, the 

energy gap between the two Dirac bands (CB-II and VB-II) at the  point can be written as𝑀 '
𝑢.𝑐.

Δ𝐸(𝑀 '
𝑢.𝑐.) = 𝐸1(𝑀 '

𝑢.𝑐.) ‒ 𝐸3(𝑀 '
𝑢.𝑐.) = 𝜖𝑆 ‒ 𝜖𝐴𝑔 + 2𝑡3 + 2𝑡4 + 4|𝜆| (𝑆6)

Since  is much larger than ,  and  (see Table S2), the energy gap is mainly contributed 𝜖𝑆 ‒ 𝜖𝐴𝑔 𝑡3 𝑡4 𝜆

by the difference in the local electronic potential between the S and Ag sites (see Figure S19a).

Along the  k-path, along which the electronic states are folded to along the  k-𝑀 '
𝑢.𝑐. ‒ 𝑋 '

𝑢.𝑐. Γ ‒ 𝑀 2

path of the reduced 1BZ of Ag2S (Figure 3a), the Hamiltonian in Eq. (2) is reduced to 

. 

𝐻0(𝑀𝑢.𝑐. ‒ 𝑌𝑢.𝑐.) = ( 𝜖𝑆 2𝑡1cos (𝑎
2

𝑘1) 0

2𝑡1cos (𝑎
2

𝑘1) 𝜖𝐴𝑔 ‒ 2𝑡3 + 2𝑡4cos (𝑎𝑘1) 0

0 0 𝜖𝐴𝑔 + 2𝑡3cos (𝑎𝑘1) ‒ 2𝑡4

) (𝑆7)

Clearly, the Hamiltonian is independent of the NNN interaction ( ). Instead, the TNNH ( ) and 𝑡2 𝑡3

TNNS ( ) interactions play key roles in determining the band dispersion of VB-I and VB-II along 𝑡4

the  ( ) k-path. As shown in Figure S19, the TNNH interaction determines the 𝑀 '
𝑢.𝑐. ‒ 𝑋 '

𝑢.𝑐. Γ ‒ 𝑀 2

dispersion of VB-I along the  ( ) direction, whereas the TNNS interaction Γ ‒ 𝑀 2 𝑀 '
𝑢.𝑐. ‒ 𝑋 '

𝑢.𝑐.

contributes to the dispersion of VB-II. Along the  ( ), on the other hand, Figure Γ ‒ 𝑋 2 𝑀 '
𝑢.𝑐. ‒ 𝑄 '

𝑢.𝑐.

S19 shows that both the NNN (t2) and TNN (t3 and t4) interaction contribute to the valence band 

dispersion.
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Topological characterization

The topological invariants and edge states of the Lieb-lattice Ag2S were calculated based on the 

Wannier functions (WFs) which were established using the Ag- , Ag- , S-  and S-  orbitals as 𝑠 𝑑 𝑠 𝑝

the initial guess for the unitary transformations.10, 11 Due to the spin degeneracy and conservation 

of , the topological invariants of the Lieb-lattice Ag2S can be characterized by spin Chern 𝑆𝑧

number , where  is the Chern number of the nth band of spin  ( ). 𝐶𝑠
𝑛 = (𝐶𝑛↑ ‒ 𝐶𝑛↓)/2 𝐶𝑛𝜎 𝜎 𝜎 = ↑, ↓

It can be calculated by integrating the Berry curvature over the whole BZ ( ):12Ω𝑛

𝐶𝑛 =
1

2𝜋∫
𝐵𝑍

Ω𝑛(�⃗�)𝑑2�⃗� (𝑆8)

Ω𝑛(�⃗�) =‒ 2𝐼𝑚 ∑
𝑚 ≠ 𝑛

⟨Ψ𝑛�⃗�│𝑣𝑥│Ψ𝑚�⃗�⟩⟨Ψ𝑚�⃗�│𝑣𝑦│Ψ𝑛�⃗�⟩
(𝜀𝑛�⃗� ‒ 𝜀𝑚�⃗�)2

(𝑆9)

 and  are the eigenstate and eigenvalue of the nth band at , respectively.  and  are the Ψ𝑛�⃗� 𝜀𝑛�⃗� �⃗� 𝑣𝑥 𝑣𝑦

velocity operators.

Based on a recursive strategy,13 the iterative Green’s function of the semi-infinite lattice was 

constructed from the WFs to visualize the edge states.14 The edge states were obtained by 

calculating the edge density of states within a semi-infinite system which was built by a truncation 

along the  direction to remove the periodicity along the  direction.Γ ‒ 𝑀 2 𝑋 ‒ 𝑋
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The buckling height-dependent total energy of the Lieb-lattice Ag2S

Figure S1. The total energy of the Lieb-lattice Ag2S as a function of the buckling height ( ).
𝑑 ⊥

𝑆𝑡 ‒ 𝑆𝑏
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The eight lowest-energy 2D Ag2S structures predicted by CALYPSO

Figure S2. Schematic illustration of the most energetically stable structures of Ag2S predicted by 
CALYPSO. They are relaxed at the PBE level and labelled in an ascending order of energy ( ).𝐸
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Table S1. The energy (E), the optimized in-plane lattice constants (a and b) and the lattice angle 
(), the space group and work function ( ) of the eight lowest-energy states of 2D Ag2S 𝐸𝑤𝑓

calculated using the PBE functional and the PBE functional with the DFT-D3 correction. E is 
normalized to 2 formula units, i.e., Ag4S2. The number in the parentheses in the space group 
column is the associated international table number.

Ag2S- E (eV) a (Å) b (Å)  (°) space group  (eV)𝐸𝑤𝑓

I -19.828 5.906 5.906 90 P4212 (90) 5.811

II -19.819 5.911 9.719 90 Pmc21 (26) 5.827

III -19.779 5.877 7.136 91.834 P-1 (2) 5.771

IV -19.770 5.875 7.682 104.449 P-1 (2) 5.814

V -19.729 7.784 9.563 113.949 P12/c1 (13) 5.854

VI -19.635 6.579 4.686 90 Pmma (51) 5.711

VII -19.537 7.184 6.928 58.941 P1 (1) 5.372

PBE

VIII -19.413 6.772 6.855 96.148 P1 (1) 5.779

I -20.951 5.806 5.806 90 P4212 (90) 5.751

II -21.238 5.792 6.250 90 Pbcm (57) 5.409

III -21.369 5.784 6.831 90.641 P-1 (2) 5.636

IV -21.313 5.801 7.566 112.506 P-1 (2) 5.679

V -20.854 7.376 9.361 113.180 Cmma (67) 5.804

VI -20.814 6.001 4.651 90 Pmma (51) 5.621

VII -21.161 6.979 6.800 59.265 P1 (1) 5.354

PBE+DFT-D3

VIII -21.040 6.619 5.785 88.687 P1 (1) 5.524

To estimate the effect of the Van der Waals (vdW) interaction, we adopted the DFT-D3 method 

(PBE+DFT-D3)15, 16. From Table S1, it is found that the vdW interaction indeed has a pronounced 

impact on the energetics of the eight lowest-energy structures. Nevertheless, the Lieb-lattice Ag2S 

(Ag2S-I) considered in the present study is consistently lower in energy than the recently reported 

α-Ag2S monolayer (Ag2S-VI)17, i.e., 32 meV/atom for PBE and 23 meV/atom for PBE+DFT-D3.
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Figure S3. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-I (Lieb-lattice Ag2S) calculated using (a) the PBE functional and (b) the PBE functional 
with the DFT-D3 correction.
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Figure S4. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-II calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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Figure S5. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-III calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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Figure S6. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-IV calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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Figure S7. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-V calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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Figure S8. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-VI (α-phase Ag2S) calculated using (a) the PBE functional and (b) the PBE functional 
with the DFT-D3 correction.
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Figure S9. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-VII calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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Figure S10. The density of states (DOS) (left panel) and the electronic band structure (right panel) 
of Ag2S-VIII calculated using (a) the PBE functional and (b) the PBE functional with the DFT-D3 
correction.
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The phonon dispersion of the Lieb-lattice Ag2S

Figure S11. The phonon dispersion of the Lieb-lattice Ag2S under a biaxial strain of (a) -5%, (b) 
-2%, (c) 0%, (d) 1%, (e) 5%, (f) 10%, (g) 20% and (h) 30%. 
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The phonon spectra of the strain-free and strained Lieb-lattice Ag2S have been calculated. As 

shown in Figure S11c, there are minor imaginary vibrational frequencies around the Brillouin 

zone center, but they can be supressed by applying slight strains, i.e. -2% (Figure S11b) or 1% 

(Figure S11d). This indicates that Ag2S can be dynamically stabilized by slight strains which can 

be realized by an appropriate substrate. As shown in Figure S11a, however, a compressive strain 

of -5% leads to plenty of imaginary phonon modes, indicative of the dynamical instability of Ag2S 

in this case. On the other hand, when Ag2S is stretched by 5%, 10% or 20%, there is lack of 

imaginary vibrational frequencies or they are only minor, indicating that stretched Ag2S is likely 

to be dynamically stable or can be stabilized by substrates. At the strain of 30%, however, the 

phonon calculation suggests the dynamical instability of the strained Ag2S (Figure S11h).
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The ab initio molecular dynamics simulations of the Lieb-lattice Ag2S

Figure S12. The energy evolution of the 5×5 supercell during a 9-ps ab initio molecular dynamics 
(AIMD) simulation at 300 K (black) and 500 K (red). The top and side view of the atomic structure 
of the Lieb-lattice Ag2S after the AIMD simulation at 300 K and 500 K are shown in the right 
panel.
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The chemical stability of Lieb-lattice Ag2S

Figure S13. The top (left panel) and side (right panel) view of oxygen adsorption on the  2 × 2
Lieb-lattice Ag2S supercell. The oxygen molecule (O2) is 3.546 Å apart from Lieb-lattice Ag2S, 
indicating that the adsorption is in the weak physisorption range and hence Ag2S is likely to be 
stable under the oxygen atmosphere.
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The electronic structure of the Lieb-lattice Ag2S at the HSE06 level

Figure S14. The band structure of the Lieb-lattice Ag2S at the HSE06 level without and with the 
spin-orbit coupling (SOC) included. Inset: the zoom-in band dispersion around the valance band 
maximum (VBM) at the  point.
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Band projections and spin projections of the electronic structure of the Lieb-lattice Ag2S at 

the PBE level

Figure S15. The projection of the electronic states on the Ag-s, Ag-dxz, Ag-dyz and Ag-  orbital, 
𝑑

𝑧2

respectively. The calculation is at the PBE level with the spin-orbit coupling (SOC) included. It is 
noted that the subscript of the k-point of  is omitted.2
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Figure S16. The spin projection of the electronic band structure of Lieb-lattice Ag2S along (a) the 
x-axis, (b) the y-axis and (c) the z-axis. Left (right) panel: the positive (negative) spin component. 
The band structure is at the PBE level with the spin-orbit coupling (SOC) included.

The Rashba-type spin-orbital coupling (SOC) could be another term in the TB model, but it is 

usually very small compared with the intrinsic SOC in Eq. (2).18 This also holds for Lieb-lattice 

Ag2S, where the degeneracy at the  point is mainly lifted by the intrinsic SOC. The small Rashba-
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type SOC in Lieb-lattice Ag2S is indicated by the spin projection in Figure S16. One can see that 

the spin degeneracy remains.
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The tight-binding model fitted to the PBE and HSE06 bands

Figure S17. The projection of the TB bands fitted to the DFT bands onto (a) the S site, (b) the Ag1 
site and (c) the Ag2 site, respectively. The DFT bands are calculated at the PBE level with the 
SOC. The fitted parameters are tabulated in Table S2. It is noted that the subscript of the k-point 
of  is omitted.2
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Figure S18. The tight-binding model of the Lieb-lattice Ag2S fitted to the HSE06 band structure 
(a) without and (b) with the SOC. (c) The fitted TB bands are unfolded into the 1BZ of the planar 
Lieb lattice. The fitted parameters are tabulated in Table S2.
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Selectively switch off neighboring interactions and the onsite energy difference in the TB 

model

Figure S19. The tight-binding model of the Lieb-lattice Ag2S fitted to the PBE band structure 
calculated with the SOC. The neighboring interactions and the difference in the onsite energy 
between the Ag site and S site are selectively switched off in the fitted TB model. The fitted 
parameters are tabulated in Table S2. It is noted that the subscript of the k-point of  is omitted.2
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The biaxial strain effect on the Ag-S bond stability of Lieb-lattice Ag2S

Figure S20. The Ag-S bond length ( ) (solid circle) and the total energy (solid 𝑑𝐴𝑔 ‒ 𝑆

diamond) of Lieb-lattice Ag2S as functions of the biaxial in-plane strain.

Figure S20 shows that the Ag-S bond length continuously increases when a biaxial strain of up to 

38% is applied. At the biaxial strain of 38%, the Ag-S bond length (2.881 Å) is within the upper 

bond limit proposed by Mounet et al. i.e. , where  is the van der 𝑟𝑣𝑑𝑊
𝐴𝑔 + 𝑟𝑣𝑑𝑊

𝑆 ‒ 1.5 = 2.92 Å 𝑟𝑣𝑑𝑊
𝑖

Waals (vdW) radius of atomic species .19, 20 This indicates that the Ag-S bond still remains, which 𝑖

is also suggested by the steady and gradual increase in the calculated total energy of strained Lieb-

lattice Ag2S (Figure S20).
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The Poisson ratio of the Lieb-lattice Ag2S

Figure S21. The Poisson ratio of the Lieb-lattice Ag2S.

The Poisson ratio ( ) along an arbitrary in-plane direction  can be 𝑣�⃗� �⃗� = cos (𝜃)�⃗�𝑥 + sin (𝜃)�⃗�𝑦

estimated as follows21

𝑣�⃗� =
(𝐶11 + 𝐶22 ‒

Δ
𝐶44

)𝑐2𝑠2 ‒ 𝐶12(𝑐4 + 𝑠4)

𝐶11𝑠4 + 𝐶22𝑐4 + ( Δ
𝐶44

‒ 2𝐶12)𝑐2𝑠2
(𝑆10)

where ,  and . ,  and  are the calculated  Δ = 𝐶11𝐶12 ‒ 𝐶 2
12 𝑐 = cos (𝜃) 𝑠 = sin (𝜃) 𝐶11 = 𝐶22 𝐶12 𝐶44

elastic constants. As shown in Figure S21, the Poisson ratio of Lieb-lattice Ag2S reaches its 

maximum along the x- and y-direction, whereas along the diagonal direction the ratio reaches its 

minimum and approaches zero. It should be noted that the Poisson ratio of Lieb-lattice Ag2S 

monolayer is always positive – the absence of negative Poisson ratio, in agreement with the recent 

report.22

In addition to the calculation approach discussed above, Ref. 22 also explicitly computed the 

Poisson ratio along the diagonal direction according to the definition, , where  and 𝑣 =‒ 𝑑𝜀𝛽/𝑑𝜀𝛼 𝜀𝛼

 indicate the relative strain along - and -direction, respectively. In this way, the Poisson ratio 𝜀𝛽 𝛼 𝛽
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of Lieb-lattice Ag2S monolayer estimates to be negative along the diagonal direction, ranging from 

-0.2 to 0.22 Noting that the linear elasticity approximation is adopted in the first approach, we 

believe that the second approach is more accurate. Therefore, Lieb-lattice Ag2S is likely to exhibit 

a negative Poisson ratio along the diagonal direction.
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The biaxial strain effect on the electronic structure of the Lieb-lattice Ag2S
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Figure S22. The electronic band structure of the Lieb-lattice Ag2S as a function of the biaxial 
strain ranging from -8% to 38%. The calculations are at the PBE level without (green dashed line) 
and with (orange solid line) the SOC interaction included. The last panel is the zoom-in view of 
the electronic band structure of the 38% strained Ag2S. It is noted that the subscript of the k-point 
of  is omitted.2
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Figure S23. The electronic band structure of the Lieb-lattice Ag2S at the PBE level with SOC 
under the biaxial strain of (a) -8%, (b) 0%, (c) 11% and (d) 38%, respectively. In panels (a-c), 
selective projections on the Ag orbitals are shown to clarify the band evolution and switching. In 
panel (d), the Ag and S orbitals which are not present in the panel contribute little to the electronic 
states around CBM and VBM. The calculated spin Chern numbers of the three highest valence 
bands are marked in panels (b-d).

As shown in Figure S23, since the spin Chern number is always zero for VB-I, Lieb-lattice Ag2S 

is a topologically trivial semiconductor regardless of tensile strains which have been studied in the 

present work. But for VB-II and VB-III, they have nonzero spin Chern number at the strain of 

11%. We noticed that spin Chern number is usually not well-defined in the presence of SOC, but 

numerically, we can always get these values. Although we must say there is no real physical reason 

to calculate Z2 for specific bands here, as a cross check, we calculated Z2 which equals 1 by 

counting the parities of VB-II / VB-III at all time-reversal momentum. This result also agrees well 

with the physical relation between spin Chern number and Z2 invariants.
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It is noted that at the biaxial strain of 38%, the VB-I and VB-II (Figure S23d) do not correspond 

to the flat band and the lower Dirac band, respectively. In the case of the strain-free Ag2S, these S-

pz dominated valence bands are deep valence bands, i.e. VB-III and VB-V in Figure 2b. They are 

pushed upwards in energy by the strain of 38% and become new VB-I and VB-II (Figure S23d). 

At the biaxial strain of 38%, VB-III and VB-IV (the last panel of Figure S22) are instead identified 

as the flat band and the lower Dirac band, respectively, as suggested by the SOC-induced 

degeneracy lifting at the  point.
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Figure S24. The projected band structure of the Lieb-lattice Ag2S under a biaxial strain of 11%. 
The projection onto other Ag orbitals under the strain of 11% is shown in Figure 5b.
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The band switch between CB-I and CB-II at the biaxial strain of 11%

Figure S25. The orbital composition of the electronic state of CB-II of the strain-free Lieb-lattice 
Ag2S and CB-I of the 11% strained Ag2S at the  point.

To get a deep insight into the band switch between CB-I and CB-II at the biaxial strain of 11%, 

the band width of CB-I and CB-II along the -X direction at the strain of 11% was first compared 

with that of the strain-free Ag2S. For clarification, original CB-I and CB-II will respectively be 

used to refer to CB-I and CB-II of the strain-free Ag2S, and CB-II and CB-I of the 11% strained 

Ag2S. Upon application of a biaxial strain of 11%, the band width of original CB-I slightly 

decreases from 1.134 eV to 1.067 eV. This is attributed to the decrease in the overlap between the 

Ag-px, py orbitals which are the dominant components of original CB-I (Figures 2c and 5b). On 

the contrary, the strain of 11% leads to a significant increase in the band width of original CB-II 

from 0.332 eV to 0.980 eV. In order to understand such a significant increase, the orbital 

compositions of original CB-II at the biaxial strain of 0% and 11% are analysed. As shown in 

Figure S25, the strain of 11% only slightly changes the contribution of the S-s and S-pz orbitals. 

In contrast, for the Ag orbitals, the Ag-dyz and Ag-dxz orbital components vanish at the strain of 

11%, whereas the Ag-s and Ag-dxy orbital components greatly increase. Note that the strain of 11% 

also substantially decreases the buckling height of Ag2S from 2.496 Å to 1.637 Å. This may 
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increase the overlap/hybridization between the S-s orbital and the dominant Ag-s, dxy orbitals, but 

weaken the hybridization between the odd-parity S-pz orbital and the Ag-s and Ag-dxy orbitals. 

Therefore, the enhanced hybridization between the S-s orbital and the Ag-s, dxy orbitals and the 

increased composition of the latter might be responsible for the significant increase in the band 

width of original CB-II, and such an increase is so significant as to cause a band switch between 

original CB-I and original CB-II.
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The edge states of the Lieb-lattice Ag2S

Figure S26. The edge band structure of the Lieb-lattice Ag2S with SOC under the biaxial strain 
of (a) 0%, (b) 11% and (c) 38%, respectively.
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Figure S27. The electronic band structure of the 11% strained Lieb-lattice Ag2S doped with 1.25 
holes. The inset shows the zoom-in view around the valence band maximum. The horizontal 
dashed line denotes the Fermi level.

At the biaxial strain of 11%, VB-II and VB-III have nonzero spin Chern numbers (Figure 5c) and 

they are connected by topologically nontrivial helical edge states. As shown in Figure S27, the 

VB-II can be accessed when 1.25 holes are doped into Ag2S.
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The fitted hopping integrals in the TB model

Table S2. The fitted tight-binding model of the Lieb-lattice Ag2S to the DFT band structure.

DFT calculation  [eV]𝜖𝑆 ‒ 𝜖𝐴𝑔  [eV]𝑡1  [eV]𝑡2  [eV]𝑡3  [eV]𝑡4  [eV]𝜆

PBE w/o SOC 1.843 -0.974 0.169𝑡1 0.237𝑡1 0.364𝑡1 -

PBE w/ SOC 1.763 -0.971 0.163𝑡1 0.235𝑡1 0.361𝑡1 0.017𝑡1

HSE06 w/o SOC 2.645 -1.035 0.175𝑡1 0.233𝑡1 0.390𝑡1 -

HSE06 w/ SOC 2.569 -1.122 0.139𝑡1 0.218𝑡1 0.338𝑡1 0.016𝑡1
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