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The detail of torque method

In the Torque method, the torque T(θ) as a function of the polar angle θ between the 

magnetization and the z is defined as, 

                       (1)
𝑇(𝜃) =

𝑑𝐸(𝜃)
𝑑𝜃

= ∑
𝑜𝑐𝑐

⟨𝜓𝑖𝑘│∂𝐻𝑠𝑜

∂𝜃 │𝜓𝑖𝑘⟩

with the spin-orbit coupling (SOC) Hamiltonian , and the summation goes 
𝐻𝑠𝑜 = ∑

𝑖

𝜉(𝑟𝑖)�̂�𝑖 ∙ �̂�

over all occupied states. By integrating T(θ), we obtain the total energy  as a function of the 𝐸(𝜃)

polar angle θ, and the MAE is equal to the difference between the lowest and highest total 

energies.
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 Table S1. The binding energies (eV) of M@C, M@H1 and M@H2 (M= Ti - Zn).

Ti V Cr Mn Fe Co Ni Cu Zn

M@Cu 1.579 1.462 1.635 2.245 2.308 2.185 2.485 2.46 2.179

M@Cd 1.717 1.528 2.025 2.117 2.706 1.704 2.401

M@H1-u 0.87 1.272 1.516 2.494 1.883 2.369 2.567 2.97 2.71

M@H1-d 0.27 1.017 1.729 2.495 2.12 2.454 3.079

M@H2-u 0.616 1.229 1.452 2.33 1.7 2.311 2.439 2.835 2.55

M@H2-d 0.345 0.715 1.501 2.331 1.993 2.263 2.991
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Fig. S1 The phonon spectrum and the relative total energy as function of AIMD time for Cr@Cu, 

Cr@H1-u and Cr@H2-u, respectively. (a), (d) for Cr@Cu, (b), (e) for Cr@H1-u, (c), (f) for Cr@H2-u.
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Table S2. The atomic displacements (∆d, in Å) of M@C, M@H1 and M@H2 (M= Ti-Ni).

Ti V Cr Mn Fe Co Ni

M@C 0.02 0.03 0.001 0.01 0.001 0.49 0.82

M@H1 0.775 1.09 1.22 0.001 0.74 0.97 0.82

M@H2 0.40 1.08 0.40 0.001 0.33 0.94 0.77



6

Table S3. The height (h, in Å) of the carbon cage in different lattices.  

Ti V Cr Mn Fe Co Ni

M@Cu 4.31 4.32 4.30 4.31 4.27 4.37 4.35

M@Cd 4.33 4.33 4.31 4.30 4.27 4.39 4.37

M@H1-u 4.52 4.57 4.56 4.55 4.52 4.56 4.61

M@H1-d 4.54 4.56 4.55 4.55 4.54 4.53 4.53

M@H2-u 4.50 4.54 4.58 4.54 4.53 4.56 4.60

M@H2-d 4.53 4.56 4.53 4.54 4.54 4.50 4.47
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Table S4. The energy barriers (eV) between phase I nad II of M@C, M@H1 and M@H2 (M= Ti-

Ni).

Ti V Cr Mn Fe Co Ni

M@C 0.077 0.041 0.010 0.163 0.001 0.559 0.306

M@H1 1.000 0.449 0.211 0.001 0.205 0.161 0.450

M@H2 0.597 0.779 0.423 0.001 0.186 0.011 0.501
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Fig. S2. Total energies of Cr@Cu and Cr@H1-u versus the deposition density.
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Fig. S3 (a) and (b) The side and top views of the charge redistribution of Cr@H1-u. (c) and (d) 

The side and top views of the charge redistribution of Cr@H1-d. (Red and blue colors indicate 

charge depletion and accumulation, the isosurface is 2.0×10-3e/Å3).
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Table S5. The exchange energies of M@C, M@H1 and M@H2 (M= V-Zn).

V@Cu V@Cd V@H1-d V@H2-d Cr@Cu Cr@Cd Cr@H1-u Cr@H1-d

J1 (meV) 3.38 2.44 1.13 1.11 0.07 0.06 0.32 1.08

Cr@H2-u Mn@Cu Mn@Cd Fe@H1-d Fe@H2-d Co@Cd Ni@Cu Ni@Cd

J1 (meV) 3.38 1.28 1.53 5.76 0.108 0.21 0.35 3.19

Cu@Cu Cu@H2-u Zn@Cu

J1 (meV) 1.12 1.18 1.33
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Fig. S4 (a) and (b) The calculated MAEs and the renormalized magnetization as a function of 

temperature T for some 2D covalent crystals with ferromagnetic ordering.
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Fig. S5 (a) and (b) The projected density of states (PDOS) and the Fermi level dependent total 

and spin channel decomposed MAEs of Fe@H2-d, respectively. One may see that the large 

perpendicular MAEs mostly stem from the SOC interaction between  and  
𝑑

𝑥𝑦/(𝑥2 ‒ 𝑦2)↓ 𝑑𝑥𝑧/𝑦𝑧↓

orbitals of Fe atom, and the cross-spin SOC interaction between  and orbitals of the 𝑝𝑥/𝑦↑ 𝑝𝑥/𝑦↓ 

carbon cage also contributes. The total MAE is rather sensitive to the shift of the Fermi level, 

indicating a noteworthy magnetoelectric effect for this system, i.e., the MAEs can be effectively 

tuned by adjusting the position of the Fermi level.
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Fig. S6 (a) and (b) The band structures of Ti@H1-u and Cr@H1-u from DFT calculations and the 

fitting band structures by using the Wannier90 package, respectively.



14

Fig. S7 (a) Schematic phase transition of the of Cr@H1-u lattice with two Cr@C28 molecules 

being converted to phase II (25%), one is at site 1 and the other randomly takes site A, B or C. 

(b)-(d) Their corresponding band structures. (e) The band structure of Cr@H1-u with only one 

Cr@C28 molecule in the supercell being converted to phase II (12.5%).


